Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Immunol ; 44(11): 902-916, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37813732

RESUMO

Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.


Assuntos
Autoimunidade , Hipersensibilidade , Humanos , Autoimunidade/genética , Epigênese Genética , Epigenômica , Mutação/genética
2.
Eur J Immunol ; 54(1): e2350633, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37799110

RESUMO

In COVID-19, hyperinflammatory and dysregulated immune responses contribute to severity. Patients with pre-existing autoimmune conditions can therefore be at increased risk of severe COVID-19 and/or associated sequelae, yet SARS-CoV-2 infection in this group has been little studied. Here, we performed single-cell analysis of peripheral blood mononuclear cells from patients with three major autoimmune diseases (rheumatoid arthritis, psoriasis, or multiple sclerosis) during SARS-CoV-2 infection. We observed compositional differences between the autoimmune disease groups coupled with altered patterns of gene expression, transcription factor activity, and cell-cell communication that substantially shape the immune response under SARS-CoV-2 infection. While enrichment of HLA-DRlow CD14+ monocytes was observed in all three autoimmune disease groups, type-I interferon signaling as well as inflammatory T cell and monocyte responses varied widely between the three groups of patients. Our results reveal disturbed immune responses to SARS-CoV-2 in patients with pre-existing autoimmunity, highlighting important considerations for disease treatment and follow-up.


Assuntos
Doenças Autoimunes , COVID-19 , Humanos , SARS-CoV-2 , Leucócitos Mononucleares , Multiômica , Autoimunidade , Análise de Célula Única
3.
Ann Rheum Dis ; 83(7): 865-878, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38413168

RESUMO

OBJECTIVES: Systemic lupus erythematosus (SLE) is characterised by systemic inflammation involving various immune cell types. Monocytes, pivotal in promoting and regulating inflammation in SLE, differentiate from classic monocytes into intermediate and non-classic monocytes, assuming diverse roles and changing their proportions in inflammation. In this study, we investigated the epigenetic and transcriptomic profiles of these and novel monocyte subsets in SLE in relation to activity and progression. METHODS: We obtained the DNA methylomes and transcriptomes of classic, intermediate, non-classic monocytes in patients with SLE (at first and follow-up visits) and healthy donors. We integrated these data with single-cell transcriptomics of SLE and healthy donors and interrogated their relationships with activity and progression. RESULTS: In addition to shared DNA methylation and transcriptomic alterations associated with a strong interferon signature, we identified monocyte subset-specific alterations, especially in DNA methylation, which reflect an impact of SLE on monocyte differentiation. SLE classic monocytes exhibited a proinflammatory profile and were primed for macrophage differentiation. SLE non-classic monocytes displayed a T cell differentiation-related phenotype, with Th17-regulating features. Changes in monocyte proportions, DNA methylation and expression occurred in relation to disease activity and involved the STAT pathway. Integration of bulk with single-cell RNA sequencing datasets revealed disease activity-dependent expansion of SLE-specific monocyte subsets, further supported the interferon signature for classic monocytes, and associated intermediate and non-classic populations with exacerbated complement activation. CONCLUSIONS: Disease activity in SLE drives a subversion of the epigenome and transcriptome programme in monocyte differentiation, impacting the function of different subsets and allowing to generate predictive methods for activity and progression.


Assuntos
Metilação de DNA , Epigênese Genética , Lúpus Eritematoso Sistêmico , Monócitos , Transcriptoma , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Monócitos/metabolismo , Monócitos/imunologia , Feminino , Adulto , Masculino , Diferenciação Celular/genética , Pessoa de Meia-Idade , Estudos de Casos e Controles , Progressão da Doença
4.
J Autoimmun ; 142: 103124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952293

RESUMO

Giant cell arteritis (GCA) is a systemic vasculitis mediated by an aberrant immunological response against the blood vessel wall. Although the pathogenic mechanisms that drive GCA have not yet been elucidated, there is strong evidence that CD4+ T cells are key drivers of the inflammatory process occurring in this vasculitis. The aim of this study was to further delineate the role of CD4+ T cells in GCA by applying single-cell RNA sequencing and T cell receptor (TCR) repertoire profiling to 114.799 circulating CD4+ T cells from eight GCA patients in two different clinical states, active and in remission, and eight healthy controls. Our results revealed an expansion of cytotoxic CD4+ T lymphocytes (CTLs) in active GCA patients, which expressed higher levels of cytotoxic and chemotactic genes when compared to patients in remission and controls. Accordingly, differentially expressed genes in CTLs of active patients were enriched in pathways related to granzyme-mediated apoptosis, inflammation, and the recruitment of different immune cells, suggesting a role of this cell type in the inflammatory and vascular remodelling processes occurring in GCA. CTLs also exhibited a higher clonal expansion in active patients with respect to those in remission. Drug repurposing analysis prioritized maraviroc, which targeted CTLs, as potentially repositionable for this vasculitis. In addition, effector regulatory T cells (Tregs) were decreased in GCA and showed lower expression of genes involved in their suppressive activity. These findings provide further insights into the pathogenic role of CD4+ T cells in GCA and suggest targeting CTLs as a potential therapeutic option.


Assuntos
Arterite de Células Gigantes , Humanos , Linfócitos T Reguladores , Linfócitos T Citotóxicos/patologia , Perfilação da Expressão Gênica
5.
J Autoimmun ; 146: 103240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754238

RESUMO

BACKGROUND: Giant cell arteritis (GCA) is an immune-mediated large-vessels vasculitis with complex etiology. Although the pathogenic mechanisms remain poorly understood, a central role for CD4+ T cells has been demonstrated. In this context, understanding the transcriptome dysregulation in GCA CD4+ T cells will yield new insights into its pathogenesis. METHODS: Transcriptome analysis was conducted on CD4+ T cells from 70 patients with GCA with different disease activity and treatment status (active patients before treatment and patients in remission with and without glucocorticoid treatment), and 28 healthy controls. The study also evaluated potential impacts of DNA methylation on gene expression alterations and assessed cross-talk with CD14+ monocytes. RESULTS: This study has uncovered a substantial number of genes and pathways potentially contributing to the pathogenicity of CD4+ T cells in GCA. Specifically, CD4+ T cells from GCA patients with active disease exhibited altered expression levels of genes involved in multiple immune-related processes, including various interleukins (IL) signaling pathways. Notably, IL-2, a decisive interleukin for regulatory T cells homeostasis, was among the most significant. Additionally, impaired apoptotic pathways appear crucial in GCA development. Our findings also suggest that histone-related epigenetic pathways may be implicated in promoting an inflammatory phenotype in GCA active patients. Finally, our study observed altered signaling communication, such as the Jagged-Notch signaling, between CD4+ T cells and monocytes that could have pathogenic relevance in GCA. CONCLUSIONS: Our study suggests the participation of novel cytokines and pathways and the occurrence of a disruption of monocyte-T cell crosstalk driving GCA pathogenesis.


Assuntos
Linfócitos T CD4-Positivos , Perfilação da Expressão Gênica , Arterite de Células Gigantes , Monócitos , Transdução de Sinais , Transcriptoma , Humanos , Arterite de Células Gigantes/imunologia , Arterite de Células Gigantes/genética , Monócitos/imunologia , Monócitos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Feminino , Masculino , Idoso , Metilação de DNA , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Epigênese Genética , Comunicação Celular/imunologia , Regulação da Expressão Gênica
6.
Trends Immunol ; 42(1): 59-75, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33293219

RESUMO

Dendritic cells (DCs), the most efficient antigen-presenting cells, are necessary for the effective activation of naïve T cells. DCs can also acquire tolerogenic functions in vivo and in vitro in response to various stimuli, including interleukin (IL)-10, transforming growth factor (TGF)-ß, vitamin D3, corticosteroids, and rapamycin. In this review, we provide a wide perspective on the regulatory mechanisms, including crosstalk with other cell types, downstream signaling pathways, transcription factors, and epigenetics, underlying the acquisition of tolerogenesis by DCs, with a special focus on human studies. Finally, we present clinical assays targeting, or based on, tolerogenic DCs in inflammatory diseases. Our discussion provides a useful resource for better understanding the biology of tolerogenic DCs and their manipulation to improve the immunological fitness of patients with certain inflammatory conditions.


Assuntos
Células Dendríticas , Inflamação , Autoimunidade , Células Dendríticas/imunologia , Células Dendríticas/patologia , Humanos , Tolerância Imunológica , Inflamação/imunologia , Inflamação/patologia , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/patologia
7.
Brain Behav Immun ; 120: 121-140, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777288

RESUMO

BACKGROUND: The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS: Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS: RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS: Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.

8.
Cell Commun Signal ; 22(1): 220, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589923

RESUMO

Endosomal single-stranded RNA-sensing Toll-like receptor-7/8 (TLR7/8) plays a pivotal role in inflammation and immune responses and autoimmune diseases. However, the mechanisms underlying the initiation of the TLR7/8-mediated autoimmune signaling remain to be fully elucidated. Here, we demonstrate that miR-574-5p is aberrantly upregulated in tissues of lupus prone mice and in the plasma of lupus patients, with its expression levels correlating with the disease activity. miR-574-5p binds to and activates human hTLR8 or its murine ortholog mTlr7 to elicit a series of MyD88-dependent immune and inflammatory responses. These responses include the overproduction of cytokines and interferons, the activation of STAT1 signaling and B lymphocytes, and the production of autoantigens. In a transgenic mouse model, the induction of miR-574-5p overexpression is associated with increased secretion of antinuclear and anti-dsDNA antibodies, increased IgG and C3 deposit in the kidney, elevated expression of inflammatory genes in the spleen. In lupus-prone mice, lentivirus-mediated silencing of miR-574-5p significantly ameliorates major symptoms associated with lupus and lupus nephritis. Collectively, these results suggest that the miR-574-5p-hTLR8/mTlr7 signaling is an important axis of immune and inflammatory responses, contributing significantly to the development of lupus and lupus nephritis.


Assuntos
Nefrite Lúpica , MicroRNAs , Humanos , Camundongos , Animais , Nefrite Lúpica/genética , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismo , Rim/metabolismo , Camundongos Transgênicos , MicroRNAs/genética
9.
Nucleic Acids Res ; 50(19): 10981-10994, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36305821

RESUMO

Dendritic cells (DCs), the most potent antigen-presenting cells, are necessary for effective activation of naïve T cells. DCs' immunological properties are modulated in response to various stimuli. Active DNA demethylation is crucial for DC differentiation and function. Vitamin C, a known cofactor of ten-eleven translocation (TET) enzymes, drives active demethylation. Vitamin C has recently emerged as a promising adjuvant for several types of cancer; however, its effects on human immune cells are poorly understood. In this study, we investigate the epigenomic and transcriptomic reprogramming orchestrated by vitamin C in monocyte-derived DC differentiation and maturation. Vitamin C triggers extensive demethylation at NF-κB/p65 binding sites, together with concordant upregulation of antigen-presentation and immune response-related genes during DC maturation. p65 interacts with TET2 and mediates the aforementioned vitamin C-mediated changes, as demonstrated by pharmacological inhibition. Moreover, vitamin C increases TNFß production in DCs through NF-κB, in concordance with the upregulation of its coding gene and the demethylation of adjacent CpGs. Finally, vitamin C enhances DC's ability to stimulate the proliferation of autologous antigen-specific T cells. We propose that vitamin C could potentially improve monocyte-derived DC-based cell therapies.


Assuntos
Ácido Ascórbico , Células Dendríticas , Epigênese Genética , NF-kappa B , Humanos , Ácido Ascórbico/farmacologia , Diferenciação Celular/genética , NF-kappa B/metabolismo , Linfócitos T/metabolismo , Reprogramação Celular
10.
Nucleic Acids Res ; 50(1): 108-126, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34893889

RESUMO

Glucocorticoids (GCs) exert potent anti-inflammatory effects in immune cells through the glucocorticoid receptor (GR). Dendritic cells (DCs), central actors for coordinating immune responses, acquire tolerogenic properties in response to GCs. Tolerogenic DCs (tolDCs) have emerged as a potential treatment for various inflammatory diseases. To date, the underlying cell type-specific regulatory mechanisms orchestrating GC-mediated acquisition of immunosuppressive properties remain poorly understood. In this study, we investigated the transcriptomic and epigenomic remodeling associated with differentiation to DCs in the presence of GCs. Our analysis demonstrates a major role of MAFB in this process, in synergy with GR. GR and MAFB both interact with methylcytosine dioxygenase TET2 and bind to genomic loci that undergo specific demethylation in tolDCs. We also show that the role of MAFB is more extensive, binding to thousands of genomic loci in tolDCs. Finally, MAFB knockdown erases the tolerogenic properties of tolDCs and reverts the specific DNA demethylation and gene upregulation. The preeminent role of MAFB is also demonstrated in vivo for myeloid cells from synovium in rheumatoid arthritis following GC treatment. Our results imply that, once directly activated by GR, MAFB plays a critical role in orchestrating the epigenomic and transcriptomic remodeling that define the tolerogenic phenotype.


Assuntos
Células Dendríticas/imunologia , Epigênese Genética , Tolerância Imunológica , Fator de Transcrição MafB/metabolismo , Receptores de Glucocorticoides/metabolismo , Adulto , Células Cultivadas , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Feminino , Humanos , Fator de Transcrição MafB/genética , Masculino , Pessoa de Meia-Idade
11.
Nucleic Acids Res ; 49(9): 5057-5073, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33950194

RESUMO

Activation-induced deaminase (AID) initiates antibody diversification in germinal center B cells by deaminating cytosines, leading to somatic hypermutation and class-switch recombination. Loss-of-function mutations in AID lead to hyper-IgM syndrome type 2 (HIGM2), a rare human primary antibody deficiency. AID-mediated deamination has been proposed as leading to active demethylation of 5-methycytosines in the DNA, although evidence both supports and casts doubt on such a role. In this study, using whole-genome bisulfite sequencing of HIGM2 B cells, we investigated direct AID involvement in active DNA demethylation. HIGM2 naïve and memory B cells both display widespread DNA methylation alterations, of which ∼25% are attributable to active DNA demethylation. For genes that undergo active demethylation that is impaired in HIGM2 individuals, our analysis indicates that AID is not directly involved. We demonstrate that the widespread alterations in the DNA methylation and expression profiles of HIGM2 naïve B cells result from premature overstimulation of the B-cell receptor prior to the germinal center reaction. Our data support a role for AID in B cell central tolerance in preventing the expansion of autoreactive cell clones, affecting the correct establishment of DNA methylation patterns.


Assuntos
Linfócitos B/imunologia , Citidina Desaminase/fisiologia , Metilação de DNA , Síndrome de Imunodeficiência com Hiper-IgM/genética , Síndrome de Imunodeficiência com Hiper-IgM/imunologia , Autoimunidade , Linfócitos B/metabolismo , Citidina Desaminase/deficiência , Citidina Desaminase/genética , Centro Germinativo/imunologia , Humanos , Síndrome de Imunodeficiência com Hiper-IgM/metabolismo , Tolerância Imunológica , Memória Imunológica , Receptores de Antígenos de Linfócitos B/genética , Transcriptoma , Sequenciamento Completo do Genoma
12.
Clin Immunol ; 234: 108920, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34973429

RESUMO

During the past twenty years, a wide range of studies have established the existence of epigenetic alterations, particularly DNA methylation changes, in lupus. Epigenetic changes might have different contributions in children-onset versus adult-onset lupus. DNA methylation alterations have been identified and characterized in relation to disease activity and damage, different lupus subtypes and responses to drugs. However, to date there has been no practical application of these findings in the clinical milieu. In this article, we provide a review of key studies showing the relationship between DNA methylation and the many clinical aspects related to lupus. We also propose several options, in relation to the range of methodological developments and experimental design, that could optimize these findings and make them amenable for use in clinical practice.


Assuntos
Metilação de DNA , Lúpus Eritematoso Sistêmico/genética , Predisposição Genética para Doença , Humanos , Lúpus Eritematoso Sistêmico/classificação , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Prognóstico
13.
Bioinformatics ; 37(2): 257-259, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33416853

RESUMO

SUMMARY: Illumina DNA methylation bead arrays provide a cost-effective platform for the simultaneous analysis of a high number of human samples. However, the analysis can be time-demanding and requires some computational expertise. shinyÉPICo is an interactive, web-based, and graphical tool that allows the user to analyze Illumina DNA methylation arrays (450k and EPIC), from the user's own computer or from a server. The tool covers the entire analysis, from the raw data to the final list of differentially methylated positions and differentially methylated regions between sample groups. It allows the user to test several normalization methods, linear model parameters, including covariates, and differentially methylated CpGs filters, in a quick and easy manner, with interactive graphics helping to select the options in each step. shinyÉPICo represents a comprehensive tool for standardizing and accelerating DNA methylation analysis, as well as optimizing computational resources in laboratories studying DNA methylation. AVAILABILITY AND IMPLEMENTATION: shinyÉPICo is freely available as an R package at the Bioconductor project (http://bioconductor.org/packages/shinyepico/) and GitHub (https://github.com/omorante/shinyepico) under an AGPL3 license.

14.
Ann Rheum Dis ; 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705375

RESUMO

OBJECTIVES: Giant cell arteritis (GCA) is a complex systemic vasculitis mediated by the interplay between both genetic and epigenetic factors. Monocytes are crucial players of the inflammation occurring in GCA. Therefore, characterisation of the monocyte methylome and transcriptome in GCA would be helpful to better understand disease pathogenesis. METHODS: We performed an integrated epigenome-and transcriptome-wide association study in CD14+ monocytes from 82 patients with GCA, cross-sectionally classified into three different clinical statuses (active, in remission with or without glucocorticoid (GC) treatment), and 31 healthy controls. RESULTS: We identified a global methylation and gene expression dysregulation in GCA monocytes. Specifically, monocytes from active patients showed a more proinflammatory phenotype compared with healthy controls and patients in remission. In addition to inflammatory pathways known to be involved in active GCA, such as response to IL-6 and IL-1, we identified response to IL-11 as a new pathway potentially implicated in GCA. Furthermore, monocytes from patients in remission with treatment showed downregulation of genes involved in inflammatory processes as well as overexpression of GC receptor-target genes. Finally, we identified changes in DNA methylation correlating with alterations in expression levels of genes with a potential role in GCA pathogenesis, such as ITGA7 and CD63, as well as genes mediating the molecular response to GC, including FKBP5, ETS2, ZBTB16 and ADAMTS2. CONCLUSION: Our results revealed profound alterations in the methylation and transcriptomic profiles of monocytes from GCA patients, uncovering novel genes and pathways involved in GCA pathogenesis and in the molecular response to GC treatment.

15.
Nature ; 529(7584): 37-42, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26738589

RESUMO

During ageing, muscle stem-cell regenerative function declines. At advanced geriatric age, this decline is maximal owing to transition from a normal quiescence into an irreversible senescence state. How satellite cells maintain quiescence and avoid senescence until advanced age remains unknown. Here we report that basal autophagy is essential to maintain the stem-cell quiescent state in mice. Failure of autophagy in physiologically aged satellite cells or genetic impairment of autophagy in young cells causes entry into senescence by loss of proteostasis, increased mitochondrial dysfunction and oxidative stress, resulting in a decline in the function and number of satellite cells. Re-establishment of autophagy reverses senescence and restores regenerative functions in geriatric satellite cells. As autophagy also declines in human geriatric satellite cells, our findings reveal autophagy to be a decisive stem-cell-fate regulator, with implications for fostering muscle regeneration in sarcopenia.


Assuntos
Autofagia/fisiologia , Senescência Celular , Células Satélites de Músculo Esquelético/citologia , Envelhecimento/patologia , Animais , Contagem de Células , Inibidor p16 de Quinase Dependente de Ciclina/genética , Epigênese Genética , Homeostase , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitofagia , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Organelas/metabolismo , Estresse Oxidativo , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regeneração , Sarcopenia/patologia , Sarcopenia/prevenção & controle , Células Satélites de Músculo Esquelético/patologia
16.
Nucleic Acids Res ; 48(2): 665-681, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799621

RESUMO

Sirtuins 1 and 2 (SIRT1/2) are two NAD-dependent deacetylases with major roles in inflammation. In addition to deacetylating histones and other proteins, SIRT1/2-mediated regulation is coupled with other epigenetic enzymes. Here, we investigate the links between SIRT1/2 activity and DNA methylation in macrophage differentiation due to their relevance in myeloid cells. SIRT1/2 display drastic upregulation during macrophage differentiation and their inhibition impacts the expression of many inflammation-related genes. In this context, SIRT1/2 inhibition abrogates DNA methylation gains, but does not affect demethylation. Inhibition of hypermethylation occurs at many inflammatory loci, which results in more drastic upregulation of their expression upon macrophage polarization following bacterial lipopolysaccharide (LPS) challenge. SIRT1/2-mediated gains of methylation concur with decreases in activating histone marks, and their inhibition revert these histone marks to resemble an open chromatin. Remarkably, specific inhibition of DNA methyltransferases is sufficient to upregulate inflammatory genes that are maintained in a silent state by SIRT1/2. Both SIRT1 and SIRT2 directly interact with DNMT3B, and their binding to proinflammatory genes is lost upon exposure to LPS or through pharmacological inhibition of their activity. In all, we describe a novel role for SIRT1/2 to restrict premature activation of proinflammatory genes.


Assuntos
Metilação de DNA/genética , Inflamação/genética , Sirtuína 1/genética , Sirtuína 2/genética , Acetilação , Diferenciação Celular/genética , Cromatina/genética , Regulação da Expressão Gênica/genética , Histonas/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional/genética
17.
J Allergy Clin Immunol ; 147(5): 1602-1618, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609625

RESUMO

The epigenome is at the interface between environmental factors and the genome, regulating gene transcription, DNA repair, and replication. Epigenetic modifications play a crucial role in establishing and maintaining cell identity and are especially crucial for neurology, musculoskeletal integrity, and the function of the immune system. Mutations in genes encoding for the components of the epigenetic machinery lead to the development of distinct disorders, especially involving the central nervous system and host defense. In this review, we focus on the role of epigenetic modifications for the function of the immune system. By studying the immune phenotype of patients with monogenic mutations in components of the epigenetic machinery (inborn errors of epigenetic regulators), we demonstrate the importance of DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and mRNA processing for immunity. Moreover, we give a short overview on therapeutic strategies targeting the epigenome.


Assuntos
Epigênese Genética , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/imunologia , Doenças do Sistema Imunitário/genética , Animais , Cromatina/metabolismo , Metilação de DNA , Histonas/metabolismo , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Mutação , RNA/imunologia
18.
Nature ; 506(7488): 316-21, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24522534

RESUMO

Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with ageing. Here we report that geriatric satellite cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and that this irreversibly affects their intrinsic regenerative and self-renewal capacities. In geriatric mice, resting satellite cells lose reversible quiescence by switching to an irreversible pre-senescence state, caused by derepression of p16(INK4a) (also called Cdkn2a). On injury, these cells fail to activate and expand, undergoing accelerated entry into a full senescence state (geroconversion), even in a youthful environment. p16(INK4a) silencing in geriatric satellite cells restores quiescence and muscle regenerative functions. Our results demonstrate that maintenance of quiescence in adult life depends on the active repression of senescence pathways. As p16(INK4a) is dysregulated in human geriatric satellite cells, these findings provide the basis for stem-cell rejuvenation in sarcopenic muscles.


Assuntos
Envelhecimento/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Adulto , Animais , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fator de Transcrição E2F1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Progéria/metabolismo , Progéria/patologia , Regeneração , Rejuvenescimento , Proteína do Retinoblastoma/metabolismo , Adulto Jovem
19.
Mol Cell ; 48(2): 266-76, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22981865

RESUMO

The methylcytosine hydroxylase Tet2 has been implicated in hematopoietic differentiation and the formation of myeloid malignancies when mutated. An ideal system to study the role of Tet2 in myelopoeisis is CEBPα-induced transdifferentiation of pre-B cells into macrophages. Here we found that CEBPα binds to upstream regions of Tet2 and that the gene becomes activated. Tet2 knockdowns impaired the upregulation of macrophage markers as well as phagocytic capacity, suggesting that the enzyme is required for both early and late stage myeloid differentiation. A slightly weaker effect was seen in primary cells with a Tet2 ablation. Expression arrays of transdifferentiating cells with Tet2 knockdowns permitted the identification of a small subset of myeloid genes whose upregulation was blunted. Activation of these target genes was accompanied by rapid increases of promoter hydroxy-methylation. Our observations indicate that Tet2 helps CEBPα rapidly derepress myeloid genes during the conversion of pre-B cells into macrophages.


Assuntos
Proteínas de Ligação a DNA , Macrófagos , Células Mieloides , Células Precursoras de Linfócitos B , Proteínas Proto-Oncogênicas , Azacitidina/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular , Linhagem Celular , Transdiferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Células Mieloides/citologia , Células Mieloides/metabolismo , Mielopoese , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
20.
Ann Rheum Dis ; 78(11): 1505-1516, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31371305

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that mainly targets joints. Monocytes and macrophages are critical in RA pathogenesis and contribute to inflammatory lesions. These extremely plastic cells respond to extracellular signals which cause epigenomic changes that define their pathogenic phenotype. Here, we interrogated how DNA methylation alterations in RA monocytes are determined by extracellular signals. METHODS: High-throughput DNA methylation analyses of patients with RA and controls and in vitro cytokine stimulation were used to investigate the underlying mechanisms behind DNA methylation alterations in RA as well as their relationship with clinical parameters, including RA disease activity. RESULTS: The DNA methylomes of peripheral blood monocytes displayed significant changes and increased variability in patients with RA with respect to healthy controls. Changes in the monocyte methylome correlate with DAS28, in which high-activity patients are divergent from healthy controls in contrast to remission patients whose methylome is virtually identical to healthy controls. Indeed, the notion of a changing monocyte methylome is supported after comparing the profiles of same individuals at different stages of activity. We show how these changes are mediated by an increase in disease activity-associated cytokines, such as tumour necrosis factor alpha and interferons, as they recapitulate the DNA methylation changes observed in patients in vitro. CONCLUSION: We demonstrate a direct link between RA disease activity and the monocyte methylome through the action of inflammation-associated cytokines. Finally, we have obtained a DNA methylation-based mathematical formula that predicts inflammation-mediated disease activity for RA and other chronic immune-mediated inflammatory diseases.


Assuntos
Artrite Reumatoide/sangue , Artrite Reumatoide/genética , Citocinas/sangue , Epigenoma/imunologia , Mediadores da Inflamação/sangue , Biomarcadores/sangue , Metilação de DNA/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA