Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(9): 107638, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39121996

RESUMO

Successful pregnancy relies on a coordinated interplay between endocrine, immune, and metabolic processes to sustain fetal growth and development. The orchestration of these processes involves multiple signaling pathways driving cell proliferation, differentiation, angiogenesis, and immune regulation necessary for a healthy pregnancy. Among the molecules supporting placental development and maternal tolerance, the families of pregnancy-specific glycoproteins and galectins are of great interest in reproductive biology. We previously found that PSG1 can bind to galectin-1 (GAL-1). Herein, we characterized the interaction between PSG1 and other members of the galectin family expressed during pregnancy, including galectin-3, -7, -9, and -13 (GAL-3, GAL-7, GAL-9, and GAL-13). We observed that PSG1 binds to GAL-1, -3, and -9, with the highest apparent affinity seen for GAL-9, and that the interaction of PSG1 with GAL-9 is carbohydrate-dependent. We further investigated the ability of PSG1 to regulate GAL-9 responses in human monocytes, a murine macrophage cell line, and T-cells, and determined whether PSG1 binds to both carbohydrate recognition domains of GAL-9. Additionally, we compared the apparent affinity of GAL-9 binding to PSG1 with other known GAL-9 ligands in these cells, Tim-3 and CD44. Lastly, we explored functional conservation between murine and human PSGs by determining that Psg23, a highly expressed member of the murine Psg family, can bind some murine galectins despite differences in amino acid composition and domain structure.


Assuntos
Galectinas , Monócitos , Glicoproteínas beta 1 Específicas da Gravidez , Linfócitos T , Feminino , Humanos , Gravidez , Galectina 1/metabolismo , Galectina 1/genética , Galectinas/metabolismo , Monócitos/metabolismo , Monócitos/citologia , Glicoproteínas beta 1 Específicas da Gravidez/metabolismo , Ligação Proteica , Linfócitos T/metabolismo , Linfócitos T/citologia
2.
J Neurosci ; 41(20): 4378-4391, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33824189

RESUMO

Transmembrane channel-like protein isoform 1 (TMC1) is a major component of the mechano-electrical transducer (MET) channel in cochlear hair cells and is subject to numerous mutations causing deafness. We report a new dominant human deafness mutation, TMC1 p.T422K, and have characterized the homologous mouse mutant, Tmc1 p.T416K, which caused deafness and outer hair cell (OHC) loss by the fourth postnatal week. MET channels showed decreased Ca2+ permeability and resting open probability, but no change in single-channel conductance or expression. Three adjacent deafness mutations are TMC1 p.L416R, p.G417R, and p.M418K, the last homologous to the mouse Beethoven that exhibits similar channel effects. All substitute a positive for a neutral residue, which could produce charge screening in the channel pore or influence binding of an accessory subunit. Channel properties were compared in mice of both sexes between dominant (Tmc1 p.T416K, Tmc1 p.D569N) and recessive (Tmc1 p.W554L, Tmc1 p.D528N) mutations of residues near the putative pore of the channel. Tmc1 p.W554L and p.D569N exhibit reduced maximum current with no effect on single-channel conductance, implying a smaller number of channels transported to the stereociliary tips; this may stem from impaired TMC1 binding to LHFPL5. Tmc1 p.D528N, located in the pore's narrowest region, uniquely caused large reductions in MET channel conductance and block by dihydrostreptomycin (DHS). For Tmc1 p.T416K and Tmc1 p.D528N, transduction loss occurred between P15 and P20. We propose two mechanisms linking channel mutations and deafness: decreased Ca2+ permeability, common to all mutants, and decreased resting open probability in low Ca2+, confined to dominant mutations.SIGNIFICANCE STATEMENT Transmembrane channel-like protein isoform 1 (TMC1) is thought to be a major component of the mechanotransducer channel in auditory hair cells, but the protein organization and channel structure are still uncertain. We made four mouse lines harboring Tmc1 point mutations that alter channel properties, causing hair cell degeneration and deafness. These include a mouse homolog of a new human deafness mutation pT416K that decreased channel Ca2+ permeability by introducing a positively-charged amino acid in the putative pore. All mutations are consistent with the channel structure predicted from modeling, but only one, p.D528N near the external face of the pore, substantially reduced channel conductance and Ca2+ permeability and virtually abolished block by dihydrostreptomycin (DHS), strongly endorsing its siting within the pore.


Assuntos
Surdez/genética , Surdez/metabolismo , Células Ciliadas Auditivas/metabolismo , Mecanotransdução Celular/genética , Proteínas de Membrana/genética , Adolescente , Adulto , Animais , Criança , Surdez/patologia , Feminino , Células Ciliadas Auditivas/patologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Pessoa de Meia-Idade , Linhagem , Mutação Puntual
3.
Glycobiology ; 30(11): 895-909, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32280962

RESUMO

Pregnancy-specific beta 1 glycoprotein (PSG1) is secreted from trophoblast cells of the human placenta in increasing concentrations as pregnancy progresses, becoming one of the most abundant proteins in maternal serum in the third trimester. PSG1 has seven potential N-linked glycosylation sites across its four domains. We carried out glycomic and glycoproteomic studies to characterize the glycan composition of PSG1 purified from serum of pregnant women and identified the presence of complex N-glycans containing poly LacNAc epitopes with α2,3 sialyation at four sites. Using different techniques, we explored whether PSG1 can bind to galectin-1 (Gal-1) as these two proteins were previously shown to participate in processes required for a successful pregnancy. We confirmed that PSG1 binds to Gal-1 in a carbohydrate-dependent manner with an affinity of the interaction of 0.13 µM. In addition, we determined that out of the three N-glycosylation-carrying domains, only the N and A2 domains of recombinant PSG1 interact with Gal-1. Lastly, we observed that the interaction between PSG1 and Gal-1 protects this lectin from oxidative inactivation and that PSG1 competes the ability of Gal-1 to bind to some but not all of its glycoprotein ligands.


Assuntos
Galectina 1/metabolismo , Polissacarídeos/metabolismo , Glicoproteínas beta 1 Específicas da Gravidez/metabolismo , Feminino , Galectina 1/química , Humanos , Ligantes , Polissacarídeos/química , Gravidez , Glicoproteínas beta 1 Específicas da Gravidez/química , Glicoproteínas beta 1 Específicas da Gravidez/isolamento & purificação
4.
Reproduction ; 160(5): 685-694, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33065543

RESUMO

In early equine pregnancy, a highly invasive trophoblast cell subpopulation, the chorionic girdle cells, invade the endometrium and form endometrial cups (EC). These cells express classical MHC molecules, thereby stimulating a humoral and cellular immune response, resulting in a massive accumulation of maternal CD4+ and CD8+ T cells around the EC. Nevertheless, no immediate destruction of endometrial cups by maternal lymphoid cells occurs, presumably due to immune tolerance. Although the environment of EC is rich in TGFB and in FOXP3+, CD4+ T cells, the mechanisms leading to tolerance have not been elucidated. Recently, we discovered that equine trophoblast cells secrete pregnancy-specific glycoproteins (PSGs). Since human and murine PSGs activate latent TGFB, we hypothesized that equine PSGs may have a similar activity. We performed plasmon surface resonance experiments to show that equine PSG CEACAM49 can directly bind to the latency-associated peptide (LAP) of both TGFB1 and TGFB2. We then found that the binding of CEACAM49 leads to the activation of TGFB1 as determined by both ELISA and cell-based assays. Furthermore, the activation of TGFB is a unique function of PSGs within the human CEA family, because CEACAM1, 3, 5, 6, 8 do not activate this cytokine. This finding further strengthens the classification of CEACAM49 as an equine PSG. Based on our results, we hypothesize that activation of latent TGFB in the EC environment by equine PSGs secreted by invasive trophoblast cells, could contribute to the generation of regulatory T cells (Tregs) to maintain immune tolerance.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Endométrio/metabolismo , Glicoproteínas/metabolismo , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Trofoblastos/metabolismo , Animais , Endométrio/imunologia , Endométrio/patologia , Feminino , Cavalos , Gravidez , Fator de Crescimento Transformador beta1/genética , Trofoblastos/imunologia , Trofoblastos/patologia
5.
Reproduction ; 160(5): 737-750, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33065549

RESUMO

We previously reported that binding to heparan sulfate (HS) is required for the ability of the placentally secreted pregnancy-specific glycoprotein 1 (PSG1) to induce endothelial tubulogenesis. PSG1 is composed of four immunoglobulin-like domains but which domains of the protein bind to HS remains unknown. To analyze the interaction of PSG1 with HS, we generated several recombinant proteins, including the individual domains, chimeric proteins between two PSG1 domains, and mutants. Using flow cytometric and surface plasmon resonance studies, we determined that the B2 domain of PSG1 binds to HS and that the positively charged amino acids encompassed between amino acids 43-59 are required for this interaction. Furthermore, we showed that the B2 domain of PSG1 is required for the increase in the formation of tubes by endothelial cells (EC) including a human endometrial EC line and two extravillous trophoblast (EVT) cell lines and for the pro-angiogenic activity of PSG1 observed in an aortic ring assay. PSG1 enhanced the migration of ECs while it increased the expression of matrix metalloproteinase-2 in EVTs, indicating that the pro-angiogenic effect of PSG1 on these two cell types may be mediated by different mechanisms. Despite differences in amino acid sequence, we observed that all human PSGs bound to HS proteoglycans and confirmed that at least two other members of the family, PSG6 and PSG9, induce tube formation. These findings contribute to a better understanding of the pro-angiogenic activity of human PSGs and strongly suggest conservation of this function among all PSG family members.


Assuntos
Indutores da Angiogênese/metabolismo , Células Endoteliais/metabolismo , Glicoproteínas/metabolismo , Neovascularização Fisiológica , Placenta/metabolismo , Proteínas da Gravidez/metabolismo , Trofoblastos/metabolismo , Células Endoteliais/citologia , Feminino , Glicoproteínas/genética , Humanos , Placenta/citologia , Gravidez , Proteínas da Gravidez/genética , Glicoproteínas beta 1 Específicas da Gravidez/metabolismo , Trofoblastos/citologia
6.
Mol Hum Reprod ; 24(12): 602-612, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30371828

RESUMO

STUDY QUESTION: Do all 10 human pregnancy-specific beta 1-glycoproteins (PSGs) and murine PSG23 activate latent transforming growth factor-ß1 (TGF-ß1)? SUMMARY ANSWER: All human PSGs and murine PSG23 activated latent TGF-ß1. WHAT IS KNOWN ALREADY: Two of the 10 members of the PSG1 family, PSG1 and PSG9, were previously shown to activate the soluble small latent complex of TGF-ß1, a cytokine with potent immune suppressive functions. STUDY DESIGN, SIZE, DURATION: Recombinant PSGs were generated and tested for their ability to activate the small latent complex of TGF-ß1 in a cell-free ELISA-based assay and in a bioassay. In addition, we tested the ability of PSG1 and PSG4 to activate latent TGF-ß bound to the extracellular matrix (ECM) or on the membranes of the Jurkat human T-cell line. PARTICIPANTS/MATERIALS, SETTING, METHODS: Recombinant PSGs were generated by transient transfection and purified with a His-Trap column followed by gel filtration chromatography. The purified PSGs were compared to vehicle (PBS) used as control for their ability to activate the small latent complex of TGF-ß1. The concentration of active TGF-ß was measured in an ELISA using the TGF-ß receptor II as capture and a bioassay using transformed mink epithelial cells that express luciferase in response to active TGF-ß. The specificity of the signal was confirmed using a TGF-ß receptor inhibitor. We also measured the binding kinetics of some human PSGs for the latent-associated peptide (LAP) of TGF-ß using surface plasmon resonance and determined whether PSG1 and PSG4 could activate the large latent complex of TGF-ß1 bound to the ECM and latent TGF-ß1 bound to the cell membrane. All experiments were performed in triplicate wells and repeated three times. MAIN RESULTS AND THE ROLE OF CHANCE: All human PSGs activated the small latent complex of TGF-ß1 (P < 0.05 vs. control) and showed similar affinities (KD) for LAP. Despite the lack of sequence conservation with its human counterparts, the ability to activate latent TGF-ß1 was shared by a member of the murine PSG family. We found that PSG1 and PSG4 activated the latent TGF-ß stored in the ECM (P < 0.01) but did not activate latent TGF-ß1 bound to glycoprotein A repetitions predominant (GARP) on the surface of Jurkat T cells. LIMITATIONS, REASONS FOR CAUTION: The affinity of the interaction of LAP and PSGs was calculated using recombinant proteins, which may differ from the native proteins in their post-translational modifications. We also utilized a truncated form of murine PSG23 rather than the full-length protein. For the studies testing the ability of PSGs to activate membrane-bound TGF-ß1, we utilized the T-cell line Jurkat and Jurkat cells expressing GARP rather than primary T regulatory cells. All the studies were performed in vitro. WIDER IMPLICATIONS OF THE FINDINGS: Here, we show that all human PSGs activate TGF-ß1 and that this function is conserved in at least one member of the rodent PSG family. In vivo PSGs could potentially increase the availability of active TGF-ß1 from the soluble and matrix-bound latent forms of the cytokine contributing to the establishment of a tolerogenic environment during pregnancy. LARGE-SCALE DATA: None. STUDY FUNDING/COMPETING INTEREST(S): The research was supported by a grant from the Collaborative Health Initiative Research Program (CHIRP). No conflicts of interests are declared by the authors.


Assuntos
Glicoproteínas beta 1 Específicas da Gravidez/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ensaio de Imunoadsorção Enzimática , Matriz Extracelular/metabolismo , Feminino , Heparitina Sulfato , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Gravidez , Glicoproteínas beta 1 Específicas da Gravidez/genética , Fator de Crescimento Transformador beta1/genética
7.
J Immunol ; 197(8): 3371-3381, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27574297

RESUMO

The involvement of NOTCH signaling in macrophage activation by Toll receptors has been clearly established, but the factors and pathways controlling NOTCH signaling during this process have not been completely delineated yet. We have characterized the role of TSPAN33, a tetraspanin implicated in a disintegrin and metalloproteinase (ADAM) 10 maturation, during macrophage proinflammatory activation. Tspan33 expression increases in response to TLR signaling, including responses triggered by TLR4, TLR3, and TLR2 activation, and it is enhanced by IFN-γ. In this study, we report that induction of Tspan33 expression by TLR and IFN-γ is largely dependent on NOTCH signaling, as its expression is clearly diminished in macrophages lacking Notch1 and Notch2 expression, but it is enhanced after overexpression of a constitutively active intracellular domain of NOTCH1. TSPAN33 is the member of the TspanC8 tetraspanin subgroup more intensely induced during macrophage activation, and its overexpression increases ADAM10, but not ADAM17, maturation. TSPAN33 favors NOTCH processing at the membrane by modulating ADAM10 and/or Presenilin1 activity, thus increasing NOTCH signaling in activated macrophages. Moreover, TSPAN33 modulates TLR-induced proinflammatory gene expression, at least in part, by increasing NF-κB-dependent transcriptional activity. Our results suggest that TSPAN33 represents a new control element in the development of inflammation by macrophages that could constitute a potential therapeutic target.


Assuntos
Ativação de Macrófagos , Macrófagos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Tetraspaninas/metabolismo , Receptores Toll-Like/metabolismo , Animais , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células RAW 264.7 , Tetraspaninas/genética , Células U937
8.
J Biol Chem ; 290(7): 4422-31, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548275

RESUMO

Pregnancy-specific glycoproteins (PSGs) are a family of Ig-like proteins secreted by specialized placental cells. The PSG1 structure is composed of a single Ig variable region-like N-terminal domain and three Ig constant region-like domains termed A1, A2, and B2. Members of the human and murine PSG family have been shown to induce anti-inflammatory cytokines from monocytes and macrophages and to stimulate angiogenesis. We recently showed that recombinant forms of PSG1 (PSG1-Fc and PSG1-His) and PSG1 purified from the serum of pregnant women are associated with the immunoregulatory cytokine TGF-ß1 and activated latent TGF-ß1. Here, we sought to examine the requirement of specific PSG1 domains in the activation of latent TGF-ß1. Plasmon surface resonance studies showed that PSG1 directly bound to the small latent complex and to the latency-associated peptide of TGF-ß1 and that this binding was mediated through the B2 domain. Furthermore, the B2 domain alone was sufficient for activating the small latent complex. In separate experiments, we found that the PSG1-mediated induction of TGF-ß1 secretion in macrophages was dependent on the N-terminal domain. Mutagenesis analysis revealed that four amino acids (LYHY) of the CC' loop of the N-terminal domain were required for induction of latent TGF-ß1 secretion. Together, our results show that two distinct domains of PSG1 are involved in the regulation of TGF-ß1 and provide a mechanistic framework for how PSGs modulate the immunoregulatory environment at the maternal-fetal interface for successful pregnancy outcome.


Assuntos
Macrófagos/metabolismo , Monócitos/metabolismo , Placenta/metabolismo , Glicoproteínas beta 1 Específicas da Gravidez/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Western Blotting , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Feminino , Humanos , Técnicas Imunoenzimáticas , Macrófagos/citologia , Camundongos , Monócitos/citologia , Placenta/citologia , Gravidez , Glicoproteínas beta 1 Específicas da Gravidez/genética , Conformação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta1/genética
9.
Proc Natl Acad Sci U S A ; 115(30): 7648-7650, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29980647
10.
bioRxiv ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39091850

RESUMO

Classically, chemokines coordinate leukocyte trafficking during immune responses; however, many chemokines have also been reported to possess direct antibacterial activity in vitro. Yet, the bacterial killing mechanism of chemokines and the biochemical properties that define which members of the chemokine superfamily are antimicrobial remain poorly understood. Here we report that the antimicrobial activity of chemokines is defined by their ability to bind phosphatidylglycerol and cardiolipin, two anionic phospholipids commonly found in the bacterial plasma membrane. We show that only chemokines able to bind these two phospholipids kill Escherichia coli and Staphylococcus aureus and that they exert rapid bacteriostatic and bactericidal effects against E. coli with a higher potency than the antimicrobial peptide beta-defensin 3. Furthermore, our data support that bacterial membrane cardiolipin facilitates the antimicrobial action of chemokines. Both biochemical and genetic interference with the chemokine-cardiolipin interaction impaired microbial growth arrest, bacterial killing, and membrane disruption by chemokines. Moreover, unlike conventional antibiotics, E. coli failed to develop resistance when placed under increasing antimicrobial chemokine pressure in vitro. Thus, we have identified cardiolipin and phosphatidylglycerol as novel binding partners for chemokines responsible for chemokine antimicrobial action. Our results provide proof of principle for developing chemokines as novel antibiotics resistant to bacterial antimicrobial resistance mechanisms.

11.
bioRxiv ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39229161

RESUMO

Microvilli-membrane bound actin protrusions on the surface of epithelial cells-are sites of critical processes including absorption, secretion, and adhesion. Increasing evidence suggests microvilli are mechanosensitive, but underlying molecules and mechanisms remain unknown. Here, we localize transmembrane channel-like proteins 4 and 5 (TMC4 and 5) and calcium and integrin binding protein 3 (CIB3) to microvillar tips in intestinal epithelial cells, near glycocalyx insertion sites. We find that TMC5 colocalizes with CIB3 in cultured cells and that a TMC5 fragment forms a complex with CIB3 in vitro. Homology and AlphaFold2 models reveal a putative ion permeation pathway in TMC4 and 5, and molecular dynamics simulations predict both proteins can conduct ions and perform lipid scrambling. These findings raise the possibility that TMC4 and 5 interact with CIB3 at microvillar tips to form a mechanosensitive complex, akin to TMC1 and 2, and CIB2 and 3, within the mechanotransduction channel complex at the tips of inner ear stereocilia.

12.
Sci Data ; 11(1): 416, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653806

RESUMO

Our sense of hearing is mediated by cochlear hair cells, of which there are two types organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains 5-15 thousand terminally differentiated hair cells, and their survival is essential for hearing as they do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. Machine learning can be used to automate the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, rat, guinea pig, pig, primate, and human cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 107,000 hair cells which have been identified and annotated as either inner or outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair-cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to give other hearing research groups the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.


Assuntos
Cóclea , Animais , Camundongos , Cobaias , Humanos , Ratos , Suínos , Células Ciliadas Auditivas , Microscopia de Fluorescência , Aprendizado de Máquina
13.
Sci Rep ; 13(1): 2528, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781873

RESUMO

The mechano-electrical transduction (MET) channel of the inner ear receptor cells, termed hair cells, is a protein complex that enables our senses of hearing and balance. Hair cell MET requires an elaborate interplay of multiple proteins that form the MET channel. One of the MET complex components is the transmembrane protein LHFPL5, which is required for hair cell MET and hearing. LHFPL5 is thought to form a multi-protein complex with other MET channel proteins, such as PCDH15, TMIE, and TMC1. Despite localizing to the plasma membrane of stereocilia, the mechanosensing organelles of hair cells, LHFPL5 requires its binding partner within the MET complex, PCDH15, to localize to the stereocilia tips in hair cells and to the plasma membrane in heterologous cells. Using the Aquaporin 3-tGFP reporter (AGR) for plasma membrane localization, we found that a region within extracellular loop 1, which interacts with PCDH15, precludes the trafficking of AGR reporter to the plasma membrane in heterologous cell lines. Our results suggest that the presence of protein partners may mask endoplasmic reticulum retention regions or enable the proper folding and trafficking of the MET complex components, to facilitate expression of the MET complex at the stereocilia membrane.


Assuntos
Células Ciliadas Auditivas , Proteínas de Membrana , Células Ciliadas Auditivas/metabolismo , Proteínas de Membrana/metabolismo , Estereocílios/metabolismo , Membrana Celular/metabolismo , Audição/fisiologia , Mecanotransdução Celular/fisiologia
14.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693382

RESUMO

Our sense of hearing is mediated by cochlear hair cells, localized within the sensory epithelium called the organ of Corti. There are two types of hair cells in the cochlea, which are organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains a few thousands of hair cells, and their survival is essential for our perception of sound because they are terminally differentiated and do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. However, the sheer number of cells along the cochlea makes manual quantification impractical. Machine learning can be used to overcome this challenge by automating the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, human, pig and guinea pig cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 90'000 hair cells, all of which have been manually identified and annotated as one of two cell types: inner hair cells and outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to supply other groups within the hearing research community with the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.

15.
J Immunol ; 184(4): 1918-30, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20083673

RESUMO

T cell/transmembrane, Ig, and mucin (TIM) proteins, identified using a congenic mouse model of asthma, critically regulate innate and adaptive immunity. TIM-1 and TIM-4 are receptors for phosphatidylserine (PtdSer), exposed on the surfaces of apoptotic cells. Herein, we show with structural and biological studies that TIM-3 is also a receptor for PtdSer that binds in a pocket on the N-terminal IgV domain in coordination with a calcium ion. The TIM-3/PtdSer structure is similar to that of TIM-4/PtdSer, reflecting a conserved PtdSer binding mode by TIM family members. Fibroblastic cells expressing mouse or human TIM-3 bound and phagocytosed apoptotic cells, with the BALB/c allelic variant of mouse TIM-3 showing a higher capacity than the congenic C.D2 Es-Hba-allelic variant. These functional differences were due to structural differences in the BC loop of the IgV domain of the TIM-3 polymorphic variants. In contrast to fibroblastic cells, T or B cells expressing TIM-3 formed conjugates with but failed to engulf apoptotic cells. Together these findings indicate that TIM-3-expressing cells can respond to apoptotic cells, but the consequence of TIM-3 engagement of PtdSer depends on the polymorphic variants of and type of cell expressing TIM-3. These findings establish a new paradigm for TIM proteins as PtdSer receptors and unify the function of the TIM gene family, which has been associated with asthma and autoimmunity and shown to modulate peripheral tolerance.


Assuntos
Alelos , Apoptose/imunologia , Variação Genética/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mucina-3/genética , Fagocitose/imunologia , Fosfatidilserinas/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/genética , Linhagem Celular , Linhagem Celular Tumoral , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mucina-3/metabolismo , Mucina-3/fisiologia , Família Multigênica/imunologia , Células NIH 3T3 , Fagocitose/genética
16.
Sci Adv ; 8(31): eabm5550, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35921424

RESUMO

The mechanoelectrical transduction (MET) channel in auditory hair cells converts sound into electrical signals, enabling hearing. Transmembrane-like channel 1 and 2 (TMC1 and TMC2) are implicated in forming the pore of the MET channel. Here, we demonstrate that inhibition of MET channels, breakage of the tip links required for MET, or buffering of intracellular Ca... induces pronounced phosphatidylserine externalization, membrane blebbing, and ectosome release at the hair cell sensory organelle, culminating in the loss of TMC1. Membrane homeostasis triggered by MET channel inhibition requires Tmc1 but not Tmc2, and three deafness-causing mutations in Tmc1 cause constitutive phosphatidylserine externalization that correlates with deafness phenotype. Our results suggest that, in addition to forming the pore of the MET channel, TMC1 is a critical regulator of membrane homeostasis in hair cells, and that Tmc1-related hearing loss may involve alterations in membrane homeostasis.


Assuntos
Surdez , Mecanotransdução Celular , Audição/fisiologia , Homeostase , Humanos , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/metabolismo , Fosfatidilserinas
17.
Sci Rep ; 12(1): 13764, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962067

RESUMO

During hair cell development, the mechanoelectrical transduction (MET) apparatus is assembled at the stereocilia tips, where it coexists with the stereocilia actin regulatory machinery. While the myosin-based tipward transport of actin regulatory proteins is well studied, isoform complexity and built-in redundancies in the MET apparatus have limited our understanding of how MET components are transported. We used a heterologous expression system to elucidate the myosin selective transport of isoforms of protocadherin 15 (PCDH15), the protein that mechanically gates the MET apparatus. We show that MYO7A selectively transports the CD3 isoform while MYO3A and MYO3B transports the CD2 isoform. Furthermore, MYO15A showed an insignificant role in the transport of PCDH15, and none of the myosins tested transport PCDH15-CD1. Our data suggest an important role for MYO3A, MYO3B, and MYO7A in the MET apparatus formation and highlight the intricate nature of MET and actin regulation during development and functional maturation of the stereocilia bundle.


Assuntos
Protocaderinas , Estereocílios , Actinas/metabolismo , Miosinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estereocílios/metabolismo
18.
Hear Res ; 404: 108212, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667877

RESUMO

The reporter mT/mG mice expressing a membrane-targeted fluorescent protein are becoming widely used to study the auditory and vestibular system due to its versatility. Here we show that high expression levels of the fluorescent mtdTomato reporter affect the function of the sensory hair cells and the auditory performance of mT/mG transgenic mice. Auditory brainstem responses and distortion product otoacoustic emissions revealed that adult mT/mG homozygous mice are profoundly deaf, whereas heterozygous mice present high frequency loss. We explore whether this line would be useful for studying and visualizing the membrane of auditory hair cells by airyscan super-resolution confocal microscopy. Membrane localization of the reporter was observed in hair cells of the cochlea, facilitating imaging of both cell bodies and stereocilia bundles without altering cellular architecture or the expression of the integral membrane motor protein prestin. Remarkably, hair cells from mT/mG homozygous mice failed to uptake the FM1-43 dye and to locate TMC1 at the stereocilia, indicating defective mechanotransduction machinery. Our work emphasizes that precautions must be considered when working with reporter mice and highlights the potential role of the cellular membrane in maintaining functional hair cells and ensuring proper hearing.


Assuntos
Surdez , Células Ciliadas Auditivas , Mecanotransdução Celular , Animais , Surdez/genética , Proteínas de Membrana/genética , Camundongos , Estereocílios , Sistema Vestibular
19.
J Assoc Res Otolaryngol ; 22(6): 601-608, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34617206

RESUMO

Identification of the components of the mechanosensory transduction complex in hair cells has been a major research interest for many auditory and vestibular scientists and has attracted attention from outside the field. The past two decades have witnessed a number of significant advances with emergence of compelling evidence implicating at least a dozen distinct molecular components of the transduction machinery. Yet, how the pieces of this ensemble fit together and function in harmony to enable the senses of hearing and balance has not been clarified. The goal of this review is to summarize a 2021 symposium presented at the annual mid-winter meeting of the Association for Research in Otolaryngology. The symposium brought together the latest insights from within and beyond the field to examine individual components of the transduction complex and how these elements interact at molecular, structural, and biophysical levels to gate mechanosensitive channels and initiate sensory transduction in the inner ear. The review includes a brief historical background to set the stage for topics to follow that focus on structure, properties, and interactions of proteins such as CDH23, PCDH15, LHFPL5, TMIE, TMC1/2, and CIB2/3. We aim to present the diversity of ideas in this field and highlight emerging theories and concepts. This review will not only provide readers with a deeper appreciation of the components of the transduction apparatus and how they function together, but also bring to light areas of broad agreement, areas of scientific controversy, and opportunities for future scientific discovery.


Assuntos
Células Ciliadas Auditivas/fisiologia , Audição/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/metabolismo
20.
J Vis Exp ; (156)2020 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-32090986

RESUMO

The hair cell mechanotransduction (MET) channel plays an important role in hearing. However, the molecular identity and structural information of MET remain unknown. Electrophysiological studies of hair cells revealed that the MET channel has a large conductance and is permeable to relatively large fluorescent cationic molecules, including some styryl dyes and Texas Red-labeled aminoglycoside antibiotics. In this protocol, we describe a method to visualize and evaluate the uptake of fluorescent dextrans in hair cells of the organ of Corti explants that can be used to assay for functional MET channels. We found that 3 kDa Texas Red-labeled dextran specifically labels functional auditory hair cells after 1-2 h incubation. In particular, 3 kDa dextran labels the two shorter stereocilia rows and accumulates in the cell body in a diffuse pattern when functional MET channels are present. An additional vesicle-like pattern of labeling was observed in the cell body of hair cells and surrounding supporting cells. Our data suggest that 3 kDa Texas-Red dextran can be used to visualize and study two pathways for cellular dye uptake; a hair cell-specific entry route through functional MET channels and endocytosis, a pattern also available to larger dextran.


Assuntos
Dextranos/farmacologia , Corantes Fluorescentes/farmacologia , Células Ciliadas Auditivas/metabolismo , Xantenos/farmacologia , Animais , Endocitose , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Estereocílios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA