RESUMO
Boreal forest fires emit large amounts of carbon into the atmosphere primarily through the combustion of soil organic matter1-3. During each fire, a portion of this soil beneath the burned layer can escape combustion, leading to a net accumulation of carbon in forests over multiple fire events4. Climate warming and drying has led to more severe and frequent forest fires5-7, which threaten to shift the carbon balance of the boreal ecosystem from net accumulation to net loss1, resulting in a positive climate feedback8. This feedback will occur if organic-soil carbon that escaped burning in previous fires, termed 'legacy carbon', combusts. Here we use soil radiocarbon dating to quantitatively assess legacy carbon loss in the 2014 wildfires in the Northwest Territories of Canada2. We found no evidence for the combustion of legacy carbon in forests that were older than the historic fire-return interval of northwestern boreal forests9. In forests that were in dry landscapes and less than 60 years old at the time of the fire, legacy carbon that had escaped burning in the previous fire cycle was combusted. We estimate that 0.34 million hectares of young forests (<60 years) that burned in the 2014 fires could have experienced legacy carbon combustion. This implies a shift to a domain of carbon cycling in which these forests become a net source-instead of a sink-of carbon to the atmosphere over consecutive fires. As boreal wildfires continue to increase in size, frequency and intensity7, the area of young forests that experience legacy carbon combustion will probably increase and have a key role in shifting the boreal carbon balance.
Assuntos
Sequestro de Carbono , Carbono/análise , Solo/química , Taiga , Incêndios Florestais/estatística & dados numéricos , Atmosfera/químicaRESUMO
BACKGROUND AND AIMS: Stand-replacing crown fires are the most prevalent type of fire regime in boreal forests in North America. However, a substantial proportion of low-severity fires are found within fire perimeters. Here we aimed to investigate the effects of low-severity fires on the reproductive potential and seedling recruitment in boreal forests stands in between stand-replacing fire events. METHODS: We recorded site and tree characteristics from 149 trees within twelve sites dominated by mature black spruce [Picea mariana (Mill.) B.S.P.] trees in the Northwest Territories, Canada. The presence of fire-scarred trees supported classification of sites as unburned or affected by low-severity fires in recent history. We used non-parametric tests to evaluate differences in site conditions between unburned and low-severity sites, and mixed effect models to evaluate differences in tree age, size, and reproductive traits among unburned trees and trees from low-severity sites. KEY RESULTS: Results showed significantly higher density of dead black spruce trees in low-severity sites, and marginally significant higher presence of permafrost. Trees from low-severity fire sites were significantly older, exhibited significantly lower tree growth, and showed a tendency towards a higher probability of cone presence and percentage of open cones compared to trees from unburned sites. Surviving fire-scarred trees affected by more recent low-severity fires showed a tendency towards higher probability of cone presence and cone production. Density of black spruce seedlings significantly increased with recent low-severity fires. CONCLUSIONS: Trees in low-severity sites appeared to have escaped mortality from up to three fires, as indicated by fire scar records and their older ages. Shallow permafrost at low-severity sites may cause lower flammability, allowing areas to act as fire refugia. Low-severity surface fires temporarily enhanced the reproductive capacity of surviving trees and the density of seedlings, likely as a stress response to the fire event.
RESUMO
Mercury concentrations ([Hg]) in fish reflect a complex array of interacting biogeochemical and ecological variables. In northern regions where fish are a critical subsistence food, understanding and predicting fish [Hg] can be particularly difficult, largely due to a paucity of comprehensive data associated with the logistical challenges of field sampling. Building on previous work where we elucidated causal relationships between fish [Hg] and a variety of catchment, water quality, and ecological variables in subarctic lakes, we investigated whether using only ratios of catchment area to lake area (CA:LA) can predict [Hg] in northern freshwater fish species. As CA:LA can be sensed remotely, they may be more feasible and practical to obtain than field data in far northern regions. Our study included thirteen remote lakes that represent a CA:LA gradient of 6.2-423.5 within an â¼66,000 km2 subarctic region of Northwest Territories, Canada. We found that size-standardized [Hg] in three widespread fish species, including Lake Whitefish (Coregonus clupeaformis), Walleye (Sander vitreus), and Northern Pike (Esox lucius), were significantly and positively related to CA:LA (p < 0.007, r2 = 67-80%), indicating higher fish [Hg] in smaller lakes surrounded by relatively larger catchments. Our findings provide compelling evidence that remotely sensed CA:LA can be used to predict [Hg] in northern fishes and aid in prioritizing understudied and subsistence fishing lakes of the Canadian subarctic for [Hg] monitoring programs.
Assuntos
Monitoramento Ambiental , Peixes , Lagos , Mercúrio , Poluentes Químicos da Água , Animais , Lagos/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Territórios do Noroeste , Tecnologia de Sensoriamento Remoto , Regiões ÁrticasRESUMO
Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughout boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years.
Assuntos
Mudança Climática , Picea , Taiga , Incêndios Florestais , América do NorteRESUMO
Over the past several decades, various trends in vegetation productivity, from increases to decreases, have been observed throughout Arctic-Boreal ecosystems. While some of this variation can be explained by recent climate warming and increased disturbance, very little is known about the impacts of permafrost thaw on productivity across diverse vegetation communities. Active layer thickness data from 135 permafrost monitoring sites along a 10° latitudinal transect of the Northwest Territories, Canada, paired with a Landsat time series of normalized difference vegetation index from 1984 to 2019, were used to quantify the impacts of changing permafrost conditions on vegetation productivity. We found that active layer thickness contributed to the observed variation in vegetation productivity in recent decades in the northwestern Arctic-Boreal, with the highest rates of greening occurring at sites where the near-surface permafrost recently had thawed. However, the greening associated with permafrost thaw was not sustained after prolonged periods of thaw and appeared to diminish after the thaw front extended outside the plants' rooting zone. Highest rates of greening were found at the mid-transect sites, between 62.4° N and 65.2° N, suggesting that more southernly sites may have already surpassed the period of beneficial permafrost thaw, while more northern sites may have yet to reach a level of thaw that supports enhanced vegetation productivity. These results indicate that the response of vegetation productivity to permafrost thaw is highly dependent on the extent of active layer thickening and that increases in productivity may not continue in the coming decades.
Assuntos
Ecossistema , Pergelissolo , Canadá , Territórios do Noroeste , Clima , Regiões ÁrticasRESUMO
Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.
Assuntos
Mudança Climática , Florestas , Biomassa , Clima , TemperaturaRESUMO
Climate warming is driving tundra shrub expansion with implications for ecosystem function and regional climate. Understanding associations between shrub ecophysiological function, distribution and environment is necessary for predicting consequences of expansion. We evaluated the role of topographic gradients on upland shrub productivity to understand potential constraints on shrub expansion. At a low arctic tundra site near Inuvik, Northwest Territories, Canada, we measured sap flow, stem water potential and productivity-related functional traits in green alder, and environmental predictors (water and nutrient availability and seasonal thaw depth) across a toposequence in alder patches. Seasonal thaw reduced stem sap flow whereas topographic position predicted stem water potential and productivity-related functional traits. Upslope shrubs were more water-limited than those downslope. Shrubs in drainage channels had traits associated with greater productivity than those on the tops of slopes. The effect of thaw depth on sap flow has implications for seasonal water-use patterns and warming impacts on tundra ecohydrology. Topographic variation in functional traits corresponds with observed spatial patterns of tundra shrub expansion along floodplains and concave hillslopes rather than in upland areas. Green alder is expanding rapidly across the low arctic tundra in northwestern North America; thus, anticipating the implications of its expansion is essential for predicting tundra function.
Assuntos
Ecossistema , Água , Regiões Árticas , Canadá , Estações do Ano , TundraRESUMO
Time series of vegetation indices derived from satellite imagery are useful in measuring vegetation response to climate warming in remote northern regions. These indices show that productivity is generally declining in the boreal forest, but it is unclear which components of boreal vegetation are driving these trends. We aimed to compare trends in the normalized difference vegetation index (NDVI) to forest growth and demographic data taken from a 10 ha mapped plot located in a spruce-dominated boreal peatland. We used microcores to quantify recent growth trends and tree census data to characterize mortality and recruitment rates of the three dominant tree species. We then compared spatial patterns in growth and demography to patterns in Landsat-derived maximum NDVI trends (1984-2019) in 78 pixels that fell within the plot. We found that NDVI trends were predominantly positive (i.e., "greening") in spite of the ongoing loss of black spruce (the dominant species; 80% of stems) from the plot. The magnitude of these trends correlated positively with black spruce growth trends, but was also governed to a large extent by tree mortality and recruitment. Greening trends were weaker (lower slope) in areas with high larch mortality, and high turnover of spruce and birch, but stronger (higher slope) in areas with high larch recruitment. Larch dominance is currently low (~11% of stems), but it is increasing in abundance as permafrost thaw progresses and will likely have a substantial influence on future NDVI trends. Our results emphasize that NDVI trends in boreal peatlands can be positive even when the forest as a whole is in decline, and that the magnitude of trends can be strongly influenced by the demographics of uncommon species.
Assuntos
Larix , Pergelissolo , Florestas , Taiga , ÁrvoresRESUMO
Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling postfire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand types in boreal forests. Understanding relationships between fungal community composition, particularly mycorrhizas, and understory plant composition is therefore important in predicting how future fire regimes may affect vegetation. We used an extreme wildfire event in boreal forests of Canada's Northwest Territories to test drivers of fungal communities and assess relationships with plant communities. We sampled soils from 39 plots 1 year after fire and 8 unburned plots. High-throughput sequencing (MiSeq, ITS) revealed 2,034 fungal operational taxonomic units. We found soil pH and fire severity (proportion soil organic layer combusted), and interactions between these drivers were important for fungal community structure (composition, richness, diversity, functional groups). Where fire severity was low, samples with low pH had higher total fungal, mycorrhizal, and saprotroph richness compared to where severity was high. Increased fire severity caused declines in richness of total fungi, mycorrhizas, and saprotrophs, and declines in diversity of total fungi and mycorrhizas. The importance of stand age (a surrogate for fire return interval) for fungal composition suggests we could detect long-term successional patterns even after fire. Mycorrhizal and plant community composition, richness, and diversity were weakly but significantly correlated. These weak relationships and the distribution of fungi across plots suggest that the underlying driver of fungal community structure is pH, which is modified by fire severity. This study shows the importance of edaphic factors in determining fungal community structure at large scales, but suggests these patterns are mediated by interactions between fire and forest stand composition.
Assuntos
Micobioma , Incêndios Florestais , Canadá , Florestas , Territórios do Noroeste , Solo , TaigaRESUMO
Trees play a key role in the global hydrological cycle and measurements performed with the thermal dissipation method (TDM) have been crucial in providing whole-tree water-use estimates. Yet, different data processing to calculate whole-tree water use encapsulates uncertainties that have not been systematically assessed. We quantified uncertainties in conifer sap flux density (Fd ) and stand water use caused by commonly applied methods for deriving zero-flow conditions, dampening and sensor calibration. Their contribution has been assessed using a stem segment calibration experiment and 4 yr of TDM measurements in Picea abies and Larix decidua growing in contrasting environments. Uncertainties were then projected on TDM data from different conifers across the northern hemisphere. Commonly applied methods mostly underestimated absolute Fd . Lacking a site- and species-specific calibrations reduced our stand water-use measurements by 37% and induced uncertainty in northern hemisphere Fd . Additionally, although the interdaily variability was maintained, disregarding dampening and/or applying zero-flow conditions that ignored night-time water use reduced the correlation between environment and Fd . The presented ensemble of calibration curves and proposed dampening correction, together with the systematic quantification of data-processing uncertainties, provide crucial steps in improving whole-tree water-use estimates across spatial and temporal scales.
Assuntos
Reologia , Temperatura , Traqueófitas/fisiologia , Incerteza , Calibragem , Modelos Lineares , Especificidade da Espécie , Fatores de Tempo , Árvores/fisiologia , ÁguaRESUMO
Climate warming and drying is associated with increased wildfire disturbance and the emergence of megafires in North American boreal forests. Changes to the fire regime are expected to strongly increase combustion emissions of carbon (C) which could alter regional C balance and positively feedback to climate warming. In order to accurately estimate C emissions and thereby better predict future climate feedbacks, there is a need to understand the major sources of heterogeneity that impact C emissions at different scales. Here, we examined 211 field plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories (NWT), Canada after an unprecedentedly large area burned in 2014. We assessed both aboveground and soil organic layer (SOL) combustion, with the goal of determining the major drivers in total C emissions, as well as to develop a high spatial resolution model to scale emissions in a relatively understudied region of the boreal forest. On average, 3.35 kg C m-2 was combusted and almost 90% of this was from SOL combustion. Our results indicate that black spruce stands located at landscape positions with intermediate drainage contribute the most to C emissions. Indices associated with fire weather and date of burn did not impact emissions, which we attribute to the extreme fire weather over a short period of time. Using these results, we estimated a total of 94.3 Tg C emitted from 2.85 Mha of burned area across the entire 2014 NWT fire complex, which offsets almost 50% of mean annual net ecosystem production in terrestrial ecosystems of Canada. Our study also highlights the need for fine-scale estimates of burned area that represent small water bodies and regionally specific calibrations of combustion that account for spatial heterogeneity in order to accurately model emissions at the continental scale.
Assuntos
Carbono/análise , Incêndios , Picea/química , Pinus/química , Taiga , Aquecimento Global , Territórios do NoroesteRESUMO
Plants appear to produce an excess of leaves, stems and roots beyond what would provide the most efficient harvest of available resources. One way to understand this overproduction of tissues is that excess tissue production provides a competitive advantage. Game theoretic models predict overproduction of all tissues compared with non-game theoretic models because they explicitly account for this indirect competitive benefit. Here, we present a simple game theoretic model of plants simultaneously competing to harvest carbon and nitrogen. In the model, a plant's fitness is influenced by its own leaf, stem and root production, and the tissue production of others, which produces a triple tragedy of the commons. Our model predicts (i) absolute net primary production when compared with two independent global datasets; (ii) the allocation relationships to leaf, stem and root tissues in one dataset; (iii) the global distribution of biome types and the plant functional types found within each biome; and (iv) ecosystem responses to nitrogen or carbon fertilization. Our game theoretic approach removes the need to define allocation or vegetation type a priori but instead lets these emerge from the model as evolutionarily stable strategies. We believe this to be the simplest possible model that can describe plant production.
Assuntos
Carbono/química , Ecossistema , Nitrogênio/química , Fenômenos Fisiológicos Vegetais , Plantas , Teoria dos Jogos , Modelos Biológicos , Folhas de Planta , Raízes de Plantas , Caules de PlantaAssuntos
Ecossistema , Solo , Dióxido de Carbono/análise , Mudança Climática , Respiração , RizosferaRESUMO
The tendency for species richness to decrease toward the poles is one of the best-characterized patterns in biogeography. The mechanisms behind this pattern have received much attention, yet very few studies have investigated very high-latitude communities. Here, using data from 134 permanent sample plots from 60 degrees to 68 degrees N, we show that boreal forest plant communities in northwestern Canada increase in richness toward the poles, despite a strong increase in climatic harshness. We hypothesized three possible explanations for this pattern: (1) historical biogeography, (2) reduced competition for light at high latitudes (biotic interactions), and (3) changes in soil characteristics with latitude. We used multidimensional scaling to investigate the community composition at each site and found no clustering of communities by latitude, suggesting that historical biogeography was not constraining site diversity. We then investigated the mechanisms behind this gradient using both abiotic (climate and soil) and biotic (tree stand characteristics) variables in a multiple factor analysis. We found that the best predictor of species richness is an environmental gradient that describes an inverse relationship between temperature and tree-stand density, suggesting that reduced competition for light due to reduced tree growth at low temperatures at higher latitudes allows greater species richness. This study shows that low energy availability and climatic harshness may not be limiting species richness toward the poles, rather, abiotic effects act instead on the strength of biotic interactions.
Assuntos
Biodiversidade , Clima , Florestas , Árvores/classificação , Animais , Territórios do Noroeste , Especificidade da EspécieRESUMO
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥ 1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 °S-61 °N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ± 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m(-2) yr(-1) and 3.1 g S m(-2) yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Monitoramento Ambiental , FlorestasRESUMO
Much of the world's boreal forest occurs on permafrost (perennially cryotic ground). As such, changes in permafrost conditions have implications for forest function and, within the zone of discontinuous permafrost (30-80% permafrost in areal extent), distribution. Here, forested peat plateaus underlain by permafrost are elevated above the surrounding permafrost-free wetlands; as permafrost thaws, ground surface subsidence leads to waterlogging at forest margins. Within the North American subarctic, recent warming has produced rapid, widespread permafrost thaw and corresponding forest loss. Although permafrost thaw-induced forest loss provides a natural analogue to deforestation occurring in more southerly locations, we know little about how fragmentation relates to subsequent permafrost thaw and forest loss or the role of changing conditions at the edges of forested plateaus. We address these knowledge gaps by (i) examining the relationship of forest loss to the degree of fragmentation in a boreal peatland in the Northwest Territories, Canada; and (ii) quantifying associated biotic and abiotic changes occurring across forest-wetland transitions and extending into the forested plateaus (i.e., edge effects). We demonstrate that the rate of forest loss correlates positively with the degree of fragmentation as quantified by perimeter to area ratio of peat plateaus (edge : area). Changes in depth of seasonal thaw, soil moisture, and effective leaf area index (LAIe ) penetrated the plateau forests by 3-15 m. Water uptake by trees was sevenfold greater in the plateau interior than at the edges with direct implications for tree radial growth. A negative relationship existed between LAIe and soil moisture, suggesting that changes in vegetation physiological function may contribute to changing edge conditions while simultaneously being affected by these changes. Enhancing our understanding of mechanisms contributing to differential rates of permafrost thaw and associated forest loss is critical for predicting future interactions between the land surface processes and the climate system in high-latitude regions.
Assuntos
Conservação dos Recursos Naturais , Gelo , Árvores , Ecossistema , Territórios do NoroesteRESUMO
Resilience of plant communities to disturbance is supported by multiple mechanisms, including ecological legacies affecting propagule availability, species' environmental tolerances, and biotic interactions. Understanding the relative importance of these mechanisms for plant community resilience supports predictions of where and how resilience will be altered with disturbance. We tested mechanisms underlying resilience of forests dominated by black spruce (Picea mariana) to fire disturbance across a heterogeneous forest landscape in the Northwest Territories, Canada. We combined surveys of naturally regenerating seedlings at 219 burned plots with experimental manipulations of ecological legacies via seed addition of four tree species and vertebrate exclosures to limit granivory and herbivory at 30 plots varying in moisture and fire severity. Black spruce recovery was greatest where it dominated pre-fire, at wet sites with deep residual soil organic layers, and fire conditions of low soil or canopy combustion and longer return intervals. Experimental addition of seed indicated all species were seed-limited, emphasizing the importance of propagule legacies. Black spruce and birch (Betula papyrifera) recruitment were enhanced with vertebrate exclusion. Our combination of observational and experimental studies demonstrates black spruce is vulnerable to effects of increased fire activity that erode ecological legacies. Moreover, black spruce relies on wet areas with deep soil organic layers where other species are less competitive. However, other species can colonize these areas if enough seed is available or soil moisture is altered by climate change. Testing mechanisms underlying species' resilience to disturbance aids predictions of where vegetation will transform with effects of climate change. Supplementary Information: The online version contains supplementary material available at 10.1007/s10021-022-00772-7.
RESUMO
One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.
Assuntos
Micorrizas , Retroalimentação , Simbiose , Plantas/microbiologia , SoloRESUMO
Mercury concentrations ([Hg]) in fish reflect complex biogeochemical and ecological interactions that occur at a range of spatial and biological scales. Elucidating these interactions is crucial to understanding and predicting fish [Hg], particularly at northern latitudes, where environmental perturbations are having profound effects on land-water-animal interactions, and where fish are a critical subsistence food source. Using data from eleven subarctic lakes that span an area of ~60,000 km2 in the Dehcho Region of Northwest Territories (Canada), we investigated how trophic ecology and growth rates of fish, lake water chemistry, and catchment characteristics interact to affect [Hg] in Northern Pike (Esox lucius), a predatory fish of widespread subsistence and commercial importance. Results from linear regression and piecewise structural equation models showed that 83% of among-lake variability in Northern Pike [Hg] was explained by fish growth rates (negative) and concentrations of methyl Hg ([MeHg]) in benthic invertebrates (positive). These variables were in turn influenced by concentrations of dissolved organic carbon, MeHg (water), and total Hg (sediment) in lakes, which were ultimately driven by catchment characteristics. Lakes in relatively larger catchments and with more temperate/subpolar needleleaf and mixed forests had higher [Hg] in Northern Pike. Our results provide a plausible mechanistic understanding of how interacting processes at scales ranging from whole catchments to individual organisms influence fish [Hg], and give insight into factors that could be considered for prioritizing lakes for monitoring in subarctic regions.
Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Esocidae , Peixes , Lagos/química , Mercúrio/análise , Poluentes Químicos da Água/análiseRESUMO
Boreal peatlands are critical ecosystems globally because they house 30%-40% of terrestrial carbon (C), much of which is stored in permafrost soil vulnerable to climate warming-induced thaw. Permafrost thaw leads to thickening of the active (seasonally thawed) layer and alters nutrient and light availability. These physical changes may influence community-level plant functional traits through intraspecific trait variation and/or species turnover. As permafrost thaw is expected to cause an efflux of carbon dioxide (CO2) and methane (CH4) from the soil to the atmosphere, it is important to understand thaw-induced changes in plant community productivity to evaluate whether these changes may offset some of the anticipated increases in C emissions. To this end, we collected vascular plant community composition and foliar functional trait data along gradients in aboveground tree biomass and active layer thickness (ALT) in a rapidly thawing boreal peatland, with the expectation that changes in above- and belowground conditions are indicative of altered resource availability. We aimed to determine whether community-level traits vary across these gradients, and whether these changes are dominated by intraspecific trait variation, species turnover, or both. Our results highlight that variability in community-level traits was largely attributable to species turnover and that both community composition and traits were predominantly driven by ALT. Specifically, thicker active layers associated with permafrost-free peatlands (i.e., bogs and fens) shifted community composition from slower-growing evergreen shrubs to faster-growing graminoids and forbs with a corresponding shift toward more productive trait values. The results from this rapidly thawing peatland suggest that continued warming-induced permafrost thaw and thermokarst development alter plant community composition and community-level traits and thus ecosystem productivity. Increased productivity may help to mitigate anticipated CO2 efflux from thawing permafrost, at least in the short term, though this response may be swamped by increase CH4 release.