Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 118(19): 190601, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28548528

RESUMO

We consider isolated many-body quantum systems which do not thermalize; i.e., expectation values approach an (approximately) steady longtime limit which disagrees with the microcanonical prediction of equilibrium statistical mechanics. A general analytical theory is worked out for the typical temporal relaxation behavior in such cases. The main prerequisites are initial conditions which appreciably populate many energy levels and do not give rise to significant spatial inhomogeneities on macroscopic scales. The theory explains very well the experimental and numerical findings in a trapped-ion quantum simulator exhibiting many-body localization, in ultracold atomic gases, and in integrable hard-core boson and XXZ models.

2.
Analyst ; 138(10): 2906-13, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23529344

RESUMO

Surface-enhanced Raman scattering (SERS) is a promising analytical technique for the detection and characterization of biological molecules and structures. The role of hydrophobic and hydrophilic surfaces in the self-assembly of protein-metallic nanoparticle structures for label-free protein detection is demonstrated. Aggregation is driven by both the hydrophobicity of the surface as well as the charge of the proteins. The best conditions for obtaining a reproducible SERS signal that allows for sensitive, label-free protein detection are provided by the use of hydrophobic surfaces and 16 × 10(11) NPs per mL. A detection limit of approximately 0.5 µg mL(-1) is achieved regardless of the proteins' charge properties and size. The developed method is simple and can be used for reproducible and sensitive detection and characterization of a wide variety of biological molecules and various structures with different sizes and charge status.


Assuntos
Nanopartículas Metálicas/química , Proteínas/análise , Prata/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
3.
Phys Rev E ; 93(6): 062107, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27415208

RESUMO

We demonstrate equilibration of isolated many-body systems in the sense that, after initial transients have died out, the system behaves practically indistinguishable from a time-independent steady state, i.e., non-negligible deviations are unimaginably rare in time. Measuring the distinguishability in terms of quantum mechanical expectation values, results of this type have been previously established under increasingly weak assumptions about the initial disequilibrium, the many-body Hamiltonian, and the considered observables. Here, we further extend these results with respect to generalized distinguishability measures which fully take into account the fact that the actually observed, primary data are not expectation values but rather the probabilistic occurrence of different possible measurement outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA