Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Am Chem Soc ; 145(40): 21832-21840, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773976

RESUMO

The light-gated ion channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) is the most frequently used optogenetic tool in neurosciences. However, the precise molecular mechanism of the channel opening and the correlation among retinal isomerization, the photocycle, and the channel activity of the protein are missing. Here, we present electrophysiological and spectroscopic investigations on the R120H variant of CrChR2. R120 is a key residue in an extended network linking the retinal chromophore to several gates of the ion channel. We show that despite the deficient channel activity, the photocycle of the variant is intact. In a comparative study for R120H and the wild type, we resolve the vibrational changes in the spectral range of the retinal and amide I bands across the time range from femtoseconds to seconds. Analysis of the amide I mode reveals a significant impairment of the ultrafast protein response after retinal excitation. We conclude that channel opening in CrChR2 is prepared immediately after retinal excitation. Additionally, chromophore isomerization is essential for both photocycle and channel activities, although both processes can occur independently.

2.
Photochem Photobiol Sci ; 22(8): 1809-1823, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37036621

RESUMO

A putative xanthorhodopsin-encoding gene, XR34, was found in the genome of the moderately halophilic gammaproteobacterium Salinivibrio socompensis S34, isolated from modern stromatolites found on the shore of Laguna Socompa (3570 m), Argentina Puna. XR-encoding genes were clustered together with genes encoding X-carotene, retinal (vitamin-A aldehyde), and carotenoid biosynthesis enzymes while the carotene ketolase gene critical for the salinixanthin antenna compound was absent. To identify its functional behavior, we herein overexpressed and characterized this intriguing microbial rhodopsin. Recombinant XR34 showed all the salient features of canonical microbial rhodopsin and covalently bound retinal as a functional chromophore with λmax = 561 nm (εmax ca. 60,000 M-1 cm-1). Two canonical counterions with pK values of around 6 and 3 were identified by pH titration of the recombinant protein. With a recovery time of approximately half an hour in the dark, XR34 shows light-dark adaptation shifting the absorption maximum from 551 to 561 nm. Laser-flash induced photochemistry at pH 9 (deprotonated primary counterion) identified a photocycle starting with a K-like intermediate, followed by an M-state (λmax ca. 400 nm, deprotonated Schiff base), and a final long wavelength-absorbing N- or O-like intermediate before returning to the parental 561 nm-state. Initiating the photocycle at pH 5 (protonated counterion) yields only bathochromic intermediates, due to the lacking capacity of the counterion to accept the Schiff base proton. Illumination of the membrane-embedded protein yielded a capacitive transport current. The presence of the M-intermediate under these conditions was demonstrated by a blue light-induced shunt process.


Assuntos
Bacteriorodopsinas , Bases de Schiff , Bases de Schiff/química , Carotenoides/metabolismo , Retinaldeído/química , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Concentração de Íons de Hidrogênio
3.
Biophys J ; 120(3): 568-575, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33347887

RESUMO

We investigated the temperature-dependent kinetics of the light-driven Na+ pump Krokinobacter rhodopsin 2 (KR2) at Na+-pumping conditions. The recorded microsecond flash photolysis data were subjected to detailed global target analysis, employing Eyring constraints and spectral decomposition. The analysis resulted in the kinetic rates, the composition of the different photocycle equilibria, and the spectra of the involved photointermediates. Our results show that with the temperature increase (from 10 to 40°C), the overall photocycle duration is accelerated by a factor of 6, with the L-to-M transition exhibiting an impressive 40-fold increase. It follows from the analysis that in KR2 the chromophore and the protein scaffold are more kinetically decoupled than in other microbial rhodopsins. We link this effect to the rigidity of the retinal protein environment. This kinetic decoupling should be considered in future studies and could potentially be exploited for fine-tuning biotechnological applications.


Assuntos
Flavobacteriaceae , Rodopsina , Cinética , Luz , Rodopsinas Microbianas , Temperatura
4.
Angew Chem Int Ed Engl ; 60(30): 16442-16447, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33973334

RESUMO

Channelrhodopsin-2 (ChR2) is a light-gated cation channel and was used to lay the foundations of optogenetics. Its dark state X-ray structure has been determined in 2017 for the wild-type, which is the prototype for all other ChR variants. However, the mechanistic understanding of the channel function is still incomplete in terms of structural changes after photon absorption by the retinal chromophore and in the framework of functional models. Hence, detailed information needs to be collected on the dark state as well as on the different photointermediates. For ChR2 detailed knowledge on the chromophore configuration in the different states is still missing and a consensus has not been achieved. Using DNP-enhanced solid-state MAS NMR spectroscopy on proteoliposome samples, we unambiguously determined the chromophore configuration in the desensitized state, and we show that this state occurs towards the end of the photocycle.


Assuntos
Channelrhodopsins/química , Chlamydomonas reinhardtii/química , Diterpenos/química , Retinaldeído/química , Bases de Schiff/química , Cátions/química , Luz , Espectroscopia de Ressonância Magnética , Processos Fotoquímicos , Fótons , Conformação Proteica
5.
J Struct Biol ; 206(1): 55-65, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29879487

RESUMO

Krokinobacter eikastus rhodopsin 2 (KR2) is a pentameric, light-driven ion pump, which selectively transports sodium or protons. The mechanism of ion selectivity and transfer is unknown. By using conventional as well as dynamic nuclear polarization (DNP)-enhanced solid-state NMR, we were able to analyse the retinal polyene chain between positions C10 and C15 as well as the Schiff base nitrogen in the KR2 resting state. In addition, 50% of the KR2 13C and 15N resonances could be assigned by multidimensional high-field solid-state NMR experiments. Assigned residues include part of the NDQ motif as well as sodium binding sites. Based on these data, the structural effects of the H30A mutation, which seems to shift the ion selectivity of KR2 primarily to Na+, could be analysed. Our data show that it causes long-range effects within the retinal binding pocket and at the extracellular Na+ binding site, which can be explained by perturbations of interactions across the protomer interfaces within the KR2 complex. This study is complemented by data from time-resolved optical spectroscopy.


Assuntos
Proteínas de Bactérias/genética , Flavobacteriaceae/genética , Espectroscopia de Ressonância Magnética/métodos , Mutação , Rodopsinas Microbianas/genética , ATPase Trocadora de Sódio-Potássio/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flavobacteriaceae/metabolismo , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(43): E5796-804, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26460012

RESUMO

The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(-) and 1,648(+) cm(-1). These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 µs (30%) and 200 µs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance.


Assuntos
Evolução Biológica , Canais Iônicos/fisiologia , Luz , Água/química , Íons
7.
Proc Natl Acad Sci U S A ; 112(32): 9896-901, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216996

RESUMO

Channelrhodopsin-2 from Chlamydomonas reinhardtii is a light-gated ion channel. Over recent years, this ion channel has attracted considerable interest because of its unparalleled role in optogenetic applications. However, despite considerable efforts, an understanding of how molecular events during the photocycle, including the retinal trans-cis isomerization and the deprotonation/reprotonation of the Schiff base, are coupled to the channel-opening mechanism remains elusive. To elucidate this question, changes of conformation and configuration of several photocycle and conducting/nonconducting states need to be determined at atomic resolution. Here, we show that such data can be obtained by solid-state NMR enhanced by dynamic nuclear polarization applied to (15)N-labeled channelrhodopsin-2 carrying 14,15-(13)C2 retinal reconstituted into lipid bilayers. In its dark state, a pure all-trans retinal conformation with a stretched C14-C15 bond and a significant out-of-plane twist of the H-C14-C15-H dihedral angle could be observed. Using a combination of illumination, freezing, and thermal relaxation procedures, a number of intermediate states was generated and analyzed by DNP-enhanced solid-state NMR. Three distinct intermediates could be analyzed with high structural resolution: the early [Formula: see text] K-like state, the slowly decaying late intermediate [Formula: see text], and a third intermediate populated only under continuous illumination conditions. Our data provide novel insight into the photoactive site of channelrhodopsin-2 during the photocycle. They further show that DNP-enhanced solid-state NMR fills the gap for challenging membrane proteins between functional studies and X-ray-based structure analysis, which is required for resolving molecular mechanisms.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Luz , Espectroscopia de Ressonância Magnética , Rodopsina/metabolismo , Isótopos de Carbono , Domínio Catalítico , Escuridão , Bicamadas Lipídicas/metabolismo , Isótopos de Nitrogênio , Multimerização Proteica , Rodopsina/química
8.
Biophys J ; 113(6): 1331-1341, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28450130

RESUMO

Nanodiscs that hold a lipid bilayer surrounded by a boundary of scaffold proteins have emerged as a powerful tool for membrane protein solubilization and analysis. By combining nanodiscs and cell-free expression technologies, even completely detergent-free membrane protein characterization protocols can be designed. Nanodiscs are compatible with various techniques, and due to their bilayer environment and increased stability, they are often superior to detergent micelles or liposomes for membrane protein solubilization. However, transport assays in nanodiscs have not been conducted so far, due to limitations of the two-dimensional nature of nanodisc membranes that offers no compartmentalization. Here, we study Krokinobacter eikastus rhodopsin-2 (KR2), a microbial light-driven sodium or proton pump, with noncovalent mass-spectrometric, electrophysiological, and flash photolysis measurements after its cotranslational insertion into nanodiscs. We demonstrate the feasibility of adsorbing nanodiscs containing KR2 to an artificial bilayer. This allows us to record light-induced capacitive currents that reflect KR2's ion transport activity. The solid-supported membrane assay with nanodisc samples provides reliable control over the ionic condition and information of the relative ion activity of this promiscuous pump. Our strategy is complemented with flash photolysis data, where the lifetimes of different photointermediates were determined at different ionic conditions. The advantage of using identical samples to three complementary approaches allows for a comprehensive comparability. The cell-free synthesis in combination with nanodiscs provides a defined hydrophobic lipid environment minimizing the detergent dependence often seen in assays with membrane proteins. KR2 is a promising tool for optogenetics, thus directed engineering to modify ion selectivity can be highly beneficial. Our approach, using the fast generation of functional ion pumps incorporated into nanodiscs and their subsequent analysis by several biophysical techniques, can serve as a versatile screening and engineering platform. This may open new avenues for the study of ion pumps and similar electrogenic targets.


Assuntos
Membranas Artificiais , Imagem Óptica , Rodopsinas Microbianas/química , Cromatografia em Gel , Escherichia coli , Estudos de Viabilidade , Flavobacteriaceae , Transporte de Íons , Espectrometria de Massas , Potenciais da Membrana , Nanoestruturas , Optogenética , Fotólise , Rodopsinas Microbianas/isolamento & purificação
9.
Proc Natl Acad Sci U S A ; 110(14): E1273-81, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509282

RESUMO

The discovery of the light-gated ion channel channelrhodopsin (ChR) set the stage for the novel field of optogenetics, where cellular processes are controlled by light. However, the underlying molecular mechanism of light-induced cation permeation in ChR2 remains unknown. Here, we have traced the structural changes of ChR2 by time-resolved FTIR spectroscopy, complemented by functional electrophysiological measurements. We have resolved the vibrational changes associated with the open states of the channel (P(2)(390) and P(3)(520)) and characterized several proton transfer events. Analysis of the amide I vibrations suggests a transient increase in hydration of transmembrane α-helices with a t(1/2) = 60 µs, which tallies with the onset of cation permeation. Aspartate 253 accepts the proton released by the Schiff base (t(1/2) = 10 µs), with the latter being reprotonated by aspartic acid 156 (t(1/2) = 2 ms). The internal proton acceptor and donor groups, corresponding to D212 and D115 in bacteriorhodopsin, are clearly different from other microbial rhodopsins, indicating that their spatial position in the protein was relocated during evolution. Previous conclusions on the involvement of glutamic acid 90 in channel opening are ruled out by demonstrating that E90 deprotonates exclusively in the nonconductive P(4)(480) state. Our results merge into a mechanistic proposal that relates the observed proton transfer reactions and the protein conformational changes to the gating of the cation channel.


Assuntos
Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Conformação Proteica , Prótons , Channelrhodopsins , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos da radiação , Cinética , Lasers , Modelos Químicos , Fotoquímica , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Biochim Biophys Acta ; 1837(5): 614-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24060527

RESUMO

Proteorhodopsins are the most abundant retinal based photoreceptors and their phototrophic function might be relevant in marine ecosystems. Here, we describe their remarkable molecular properties with a special focus on the green absorbing variant. Its distinct features include a high pKa value of the primary proton acceptor stabilized through an interaction with a conserved histidine, a long-range interaction between the cytoplasmic EF loop and the chromophore entailing a particular mode of color tuning and a variable proton pumping vectoriality with complex voltage-dependence. The proteorhodopsin family represents a profound example for structure-function relationships. Especially the development of a biophysical understanding of green proteorhodopsin is an excellent example for the unique opportunities offered by a combined approach of advanced spectroscopic and electrophysiological methods. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.


Assuntos
Histidina/química , Prótons , Retinaldeído/química , Rodopsina/química , Sequência de Aminoácidos , Animais , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons , Luz , Modelos Moleculares , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Conformação Proteica , Proteobactérias/química , Proteobactérias/fisiologia , Retinaldeído/metabolismo , Rodopsina/metabolismo , Rodopsinas Microbianas , Relação Estrutura-Atividade , Xenopus/fisiologia
11.
J Am Chem Soc ; 137(5): 1850-61, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25584873

RESUMO

Light-gated ion permeation by channelrhodopsin-2 (ChR2) relies on the photoisomerization of the retinal chromophore and the subsequent photocycle, leading to the formation (on-gating) and decay (off-gating) of the conductive state. Here, we have analyzed the photocycle of a fast-cycling ChR2 variant (E123T mutation, also known as ChETA), by time-resolved UV/vis, step-scan FT-IR, and tunable quantum cascade laser IR spectroscopies with nanosecond resolution. Pre-gating conformational changes rise with a half-life of 200 ns, silent to UV/vis but detected by IR spectroscopy. They involve changes in the peptide backbone and in the H-bond of the side chain of the critical residue D156. Thus, the P1(500) intermediate must be separated into early and late states. Light-adapted ChR2 contains a mixture of all-trans and 13-cis retinal in a 70:30 ratio which are both photoactive. Analysis of ethylenic and fingerprint vibrations of retinal provides evidence that the 13-cis photocycle recovers in 1 ms. This recovery is faster than channel off-gating and most of the proton transfer reactions, implying that the 13-cis photocycle is of minor functional relevance for ChR2.


Assuntos
Mutação , Rodopsina/química , Rodopsina/metabolismo , Escuridão , Diterpenos , Cinética , Fotólise , Conformação Proteica , Retinaldeído/química , Retinaldeído/metabolismo , Rodopsina/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Fatores de Tempo , Vibração
12.
Nat Methods ; 8(12): 1083-8, 2011 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22056675

RESUMO

The precise co-localization and stoichiometric expression of two different light-gated membrane proteins can vastly improve the physiological usefulness of optogenetics for the modulation of cell excitability with light. Here we present a gene-fusion strategy for the stable 1:1 expression of any two microbial rhodopsins in a single polypeptide chain. By joining the excitatory channelrhodopsin-2 with the inhibitory ion pumps halorhodopsin or bacteriorhodopsin, we demonstrate light-regulated quantitative bi-directional control of the membrane potential in HEK293 cells and neurons in vitro. We also present synergistic rhodopsin combinations of channelrhodopsin-2 with Volvox carteri channelrhodopsin-1 or slow channelrhodopsin-2 mutants, to achieve enhanced spectral or kinetic properties, respectively. Finally, we demonstrate the utility of our fusion strategy to determine ion-turnovers of as yet uncharacterized rhodopsins, exemplified for archaerhodopsin and CatCh, or to correct pump cycles, exemplified for halorhodopsin.


Assuntos
Fusão Gênica Artificial , Luz , Rodopsina/genética , Bacteriorodopsinas/análise , Bacteriorodopsinas/biossíntese , Bacteriorodopsinas/genética , Células HEK293 , Hipocampo/citologia , Humanos , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/metabolismo , Rodopsina/análise , Rodopsina/biossíntese
13.
Biochemistry ; 52(16): 2750-63, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23586665

RESUMO

Retinylidene photoreceptors are ubiquitously present in marine protists as first documented by the identification of green proteorhodopsin (GPR). We present a detailed investigation of a rhodopsin from the protist Oxyrrhis marina (OR1) with respect to its spectroscopic properties and to its vectorial proton transport. Despite its homology to GPR, OR1's features differ markedly in its pH dependence. Protonation of the proton acceptor starts at pH below 4 and is sensitive to the ionic conditions. The mutation of a conserved histidine H62 did not influence the pK(a) value in a similar manner as in other proteorhodopsins where the charged histidine interacts with the proton acceptor forming the so-called His-Asp cluster. Mutational and pH-induced effects were further reflected in the temporal behavior upon light excitation ranging from femtoseconds to seconds. The primary photodynamics exhibits a high sensitivity to the environment of the proton acceptor D100 that are correlated to the different initial states. The mutation of the H62 does not affect photoisomerization at neutral pH. This is in agreement with NMR data indicating the absence of the His-Asp cluster. The subsequent steps in the photocycle revealed protonation reactions at the Schiff base coupled to proton pumping even at low pH. The main electrogenic steps are associated with the reprotonation of the Schiff base and internal proton donor. Hence, OR1 shows a different theme of the His-Asp organization where the low pK(a) of the proton acceptor is not dominated by this interaction, but by other electrostatic factors.


Assuntos
Dinoflagellida/química , Rodopsina/química , Rodopsina/metabolismo , Organismos Aquáticos , Ácido Aspártico/química , Ácido Aspártico/genética , Dinoflagellida/fisiologia , Histidina/genética , Concentração de Íons de Hidrogênio , Luz , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Fotoquímica , Prótons , Rodopsina/genética , Bases de Schiff/química
14.
J Am Chem Soc ; 135(18): 6968-76, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23537405

RESUMO

The primary reaction dynamics of channelrhodopsin-2 was investigated using femtosecond vis-pump/mid-IR probe spectroscopy. Due to the fast deactivation of the excited state in channelrhodopsin-2, it is possible to observe the direct impact of retinal isomerization on the protein surrounding. We show that the dominant negative band at 1665 cm(-1) tentatively assigned to an amide I vibration is developed with a time constant of 0.5 ps. Also a variety of side-chain vibrations are formed or intensified on this time scale. The comparison of the light-induced FT-IR spectra of channelrhodopsin-2 in H2O and D2O at 80 K enabled us to tentatively identify the contribution of Arg side chain(s). The subsequently observed decay of nearly the whole difference pattern has a particularly high impact on the C═C and C═N stretching vibrations of the retinal. This suggests that the underlying mechanism describes a cooling process in which the excess energy is redirected toward the retinal surrounding, e.g., the protein and functional water molecules. The pronounced protein contributions in comparison to other rhodopsins point to a very efficient energy redistribution in channelrhodopsin-2.


Assuntos
Proteínas de Transporte/metabolismo , Retina/metabolismo , Proteínas de Transporte/química , Transferência de Energia , Modelos Moleculares , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Biophys J ; 102(11): 2649-57, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22713581

RESUMO

Femtosecond time-resolved absorption measurements were performed to investigate the influence of the pH, imidazole concentration, and point mutations on the isomerization process of Channelrhodopsin-2. Apart from the typical spectral characteristics of retinal isomerization, an additional absorption feature rises for the wild-type (wt) on a timescale from tens of ps to 1 ns within the spectral range of the photoproduct and is attributed to an equilibration between different K-intermediates. Remarkably, this absorption feature vanishes upon addition of imidazole or lowering the pH. In the latter case, the isomerization is dramatically slowed down, due to protonation of negatively charged amino acids within the retinal binding pocket, e.g., E123 and D253. Moreover, we investigated the influence of several point mutations within the retinal binding pocket E123T, E123D, C128T, and D156C. For E123T, the isomerization is retarded compared to wt and E123D, indicating that a negatively charged residue at this position functions as an effective catalyst in the isomerization process. In the case of the C128T mutant, all primary processes are slightly accelerated compared to the wt, whereas the isomerization dynamics for the D156C mutant is similar to wt after addition of imidazole.


Assuntos
Imidazóis/farmacologia , Mutagênese Sítio-Dirigida , Mutação/genética , Rodopsina/genética , Rodopsina/metabolismo , Absorção/efeitos dos fármacos , Sítios de Ligação , Cristalografia por Raios X , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Isomerismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Processos Fotoquímicos/efeitos dos fármacos , Retinaldeído/química , Retinaldeído/metabolismo , Rodopsina/química , Análise Espectral , Fatores de Tempo
16.
Biochemistry ; 51(28): 5589-600, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22738119

RESUMO

The photocycle of the proton acceptor complex mutant D227N of the bacterial retinal protein proteorhodopsin is investigated employing steady state pH-titration experiments in the UV-visible range as well as femtosecond-pump-probe spectroscopy and flash photolysis in the visible spectral range. The evaluation of the pH-dependent spectra showed that the neutralization of the charge at position 227 has a remarkable influence on the ground state properties of the protein. Both the pK(a) values of the primary proton acceptor and of the Schiff base are considerably decreased. Femtosecond-time-resolved measurements demonstrate that the general S(1) deactivation pathway; that is, the K-state formation is preserved in the D227N mutant. However, the pH-dependence of the reaction rate is lost by the substitution of Asp227 with an asparagine. Also no significant kinetic differences are observed upon deuteration. This is explained by the lack of a strongly hydrogen-bonded water in the vicinity of Asp97, Asp227, and the Schiff base or a change in the hydrogen bonding of it (Ikeda et al. (2007) Biochemistry 46, 5365-5373). The flash photolysis measurements prove a considerably elongated photocycle with pronounced pH-dependence. Interestingly, at pH 9 the M-state is visible until the end of the reaction cycle, leading to the conclusion that the mutation does not only lower the pK(a) of the Schiff base in the unphotolyzed ground state but also prevents an efficient reprotonation reaction.


Assuntos
Ácido Aspártico/química , Rodopsina/química , Óxido de Deutério/química , Concentração de Íons de Hidrogênio , Isomerismo , Modelos Moleculares , Mutação , Processos Fotoquímicos , Retinaldeído/química , Rodopsina/genética , Rodopsinas Microbianas , Espectrofotometria , Água/química
17.
Proc Natl Acad Sci U S A ; 106(30): 12317-22, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19590013

RESUMO

Since its discovery, the light-gated cation channel Channelrhodopsin-2 (ChR2) has proven to be a long-sought tool for the noninvasive, light-activated control of neural cells in culture and in living animals. Although ChR2 is widely used in neurobiological applications, little is known about its molecular mechanism. In this work, the unitary conductance of ChR2 was determined for different cations, for example 40 fS at 200 mM NaCl and -60 mV, using noise analysis. The kinetics of the ion channel obtained by noise analysis is in excellent agreement with the photocurrent kinetics obtained by voltage-clamp and time-resolved spectroscopy. The inward rectification of the channel could be explained by the single channel parameters. ChR2 represents an ion channel with a 7 transmembrane helix motif, even though the sequence homology of its essential amino acids to those of the light-driven H(+) pump bacteriorhodopsin (bR) is high. Here, we also show that when ChR2 is expressed in electrofused giant HEK293 cells or reconstituted on planar lipid membranes, it can indeed act as an outwardly driven H(+) pump, demonstrating that ChR2 is bifunctional, and in-line with other microbial rhodopsins, a H(+) pump but with a leak that shows ion channel properties.


Assuntos
Proteínas de Transporte/fisiologia , Canais Iônicos/fisiologia , Bombas de Próton/fisiologia , Proteínas de Transporte/genética , Linhagem Celular , Relação Dose-Resposta a Droga , Guanidina/farmacologia , Humanos , Canais Iônicos/genética , Cinética , Luz , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos da radiação , Técnicas de Patch-Clamp , Bombas de Próton/genética , Cloreto de Sódio/farmacologia , Temperatura , Transfecção
18.
Biochem Biophys Res Commun ; 410(4): 737-43, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21683688

RESUMO

Channelrhodopsin 2 (ChR2) is a microbial-type rhodopsin with a putative heptahelical structure that binds all-trans-retinal. Blue light illumination of ChR2 activates an intrinsic leak channel conductive for cations. Sequence comparison of ChR2 with the related ChR1 protein revealed a cluster of charged amino acids within the predicted transmembrane domain 2 (TM2), which includes glutamates E90, E97 and E101. Charge inversion substitutions of these residues significantly altered ChR2 function as revealed by two-electrode voltage-clamp recordings of light-induced currents from Xenopus laevis oocytes expressing the respective mutant proteins. Specifically, replacement of E90 by lysine or alanine resulted in differential effects on H(+)- and Na(+)-mediated currents. Our results are consistent with this glutamate side chain within the proposed TM2 contributing to ion flux through and the cation selectivity of ChR2.


Assuntos
Rodopsina/metabolismo , Sequência de Aminoácidos , Animais , Cátions/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/genética , Concentração de Íons de Hidrogênio , Transporte de Íons , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína/genética , Rodopsina/química , Rodopsina/genética , Xenopus laevis
19.
Methods Mol Biol ; 2191: 67-84, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32865739

RESUMO

Electrophysiological experiments are required to determine the ion transport properties of light-activated currents from microbial rhodopsin expressing cells. The recordings set the quantitative basis for correlation with spectroscopic data and for understanding of channel gating, ion transport vectoriality, or ion selectivity. This chapter focuses on voltage-clamp recordings of channelrhodopsin-2-expressing cells, and it will describe different illumination protocols that reveal the kinetic properties of gating. While the opening and closing reaction is determined from a single turnover upon a short laser flash, desensitization of the light-gated currents is studied under continuous illumination. Recovery from the desensitized state is probed after prolonged illumination with a subsequent light activation upon different dark intervals. Compiling the experimental data will define a minimum number of states in kinetic schemes used to describe the light-gated currents in channelrhodopsins, and emphasis will be given on how to correlate the results with the different time-resolved spectroscopic experiments.


Assuntos
Channelrhodopsins/química , Fenômenos Eletrofisiológicos/efeitos da radiação , Biologia Molecular/métodos , Rodopsinas Microbianas/química , Channelrhodopsins/efeitos da radiação , Ativação do Canal Iônico/efeitos da radiação , Transporte de Íons/efeitos da radiação , Cinética , Luz , Potenciais da Membrana/efeitos da radiação , Rodopsinas Microbianas/efeitos da radiação
20.
Sci Adv ; 7(11)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33712469

RESUMO

The functional mechanism of the light-driven sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) raises fundamental questions since the transfer of cations must differ from the better-known principles of rhodopsin-based proton pumps. Addressing these questions must involve a better understanding of its photointermediates. Here, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance spectroscopy on cryo-trapped photointermediates shows that the K-state with 13-cis retinal directly interconverts into the subsequent L-state with distinct retinal carbon chemical shift differences and an increased out-of-plane twist around the C14-C15 bond. The retinal converts back into an all-trans conformation in the O-intermediate, which is the key state for sodium transport. However, retinal carbon and Schiff base nitrogen chemical shifts differ from those observed in the KR2 dark state all-trans conformation, indicating a perturbation through the nearby bound sodium ion. Our findings are supplemented by optical and infrared spectroscopy and are discussed in the context of known three-dimensional structures.


Assuntos
Rodopsina , ATPase Trocadora de Sódio-Potássio , Carbono/metabolismo , Flavobacteriaceae , Íons/metabolismo , Espectroscopia de Ressonância Magnética , Rodopsina/química , Sódio/química , ATPase Trocadora de Sódio-Potássio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA