Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(45): e2312022120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903266

RESUMO

The soil bacterium Bacillus subtilis is a model organism to investigate the formation of biofilms, the predominant form of microbial life. The secreted protein BslA self-assembles at the surface of the biofilm to give the B. subtilis biofilm its characteristic hydrophobicity. To understand the mechanism of BslA self-assembly at interfaces, here we built a molecular model based on the previous BslA crystal structure and the crystal structure of the BslA paralogue YweA that we determined. Our analysis revealed two conserved protein-protein interaction interfaces supporting BslA self-assembly into an infinite 2-dimensional lattice that fits previously determined transmission microscopy images. Molecular dynamics simulations and in vitro protein assays further support our model of BslA elastic film formation, while mutagenesis experiments highlight the importance of the identified interactions for biofilm structure. Based on this knowledge, YweA was engineered to form more stable elastic films and rescue biofilm structure in bslA deficient strains. These findings shed light on protein film assembly and will inform the development of BslA technologies which range from surface coatings to emulsions in fast-moving consumer goods.


Assuntos
Proteínas de Bactérias , Matriz Extracelular de Substâncias Poliméricas , Proteínas de Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Biofilmes , Bacillus subtilis/metabolismo , Simulação de Dinâmica Molecular
2.
Langmuir ; 40(8): 4164-4173, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38351711

RESUMO

Microbial growth often occurs within multicellular communities called biofilms, where cells are enveloped by a protective extracellular matrix. Bacillus subtilis serves as a model organism for biofilm research and produces two crucial secreted proteins, BslA and TasA, vital for biofilm matrix formation. BslA exhibits surface-active properties, spontaneously self-assembling at hydrophobic/hydrophilic interfaces to form an elastic protein film, which renders B. subtilis biofilm surfaces water-repellent. TasA is traditionally considered a fiber-forming protein with multiple matrix-related functions. In our current study, we investigate whether TasA also possesses interfacial properties and whether it has any impact on BslA's ability to form an interfacial protein film. Our research demonstrates that TasA indeed exhibits interfacial activity, partitioning to hydrophobic/hydrophilic interfaces, stabilizing emulsions, and forming an interfacial protein film. Interestingly, TasA undergoes interface-induced restructuring similar to BslA, showing an increase in ß-strand secondary structure. Unlike BslA, TasA rapidly reaches the interface and forms nonelastic films that rapidly relax under pressure. Through mixed protein pendant drop experiments, we assess the influence of TasA on BslA film formation, revealing that TasA and other surface-active molecules can compete for interface space, potentially preventing BslA from forming a stable elastic film. This raises a critical question: how does BslA self-assemble to form the hydrophobic "raincoat" observed in biofilms in the presence of other potentially surface-active species? We propose a model wherein surface-active molecules, including TasA, initially compete with BslA for interface space. However, under lateral compression or pressure, BslA retains its position, expelling other molecules into the bulk. This resilience at the interface may result from structural rearrangements and lateral interactions between BslA subunits. This combined mechanism likely explains BslA's role in forming a stable film integral to B. subtilis biofilm hydrophobicity.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteínas de Bactérias/química , Bacillus subtilis/metabolismo , Estrutura Secundária de Proteína , Biofilmes , Matriz Extracelular de Substâncias Poliméricas/metabolismo
3.
Microbiology (Reading) ; 169(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526065

RESUMO

Biofilms are complex communities of microbes that are bound by an extracellular macromolecular matrix produced by the residents. Biofilms are the predominant form of microbial life in the natural environment and although they are the leading cause of chronic infections, they are equally deeply connected to our ability to bioremediate waste and toxic materials. Here we highlight the emergent properties of biofilm communities and explore notable biofilms before concluding by providing examples of their major impact on our health and both natural and built environments.


Assuntos
Biofilmes , Meio Ambiente , Matriz Extracelular/metabolismo
4.
Antimicrob Agents Chemother ; 66(8): e0005222, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35862738

RESUMO

The bacterium Pseudomonas aeruginosa can colonize the airways of patients with chronic lung disease. Within the lung, P. aeruginosa forms biofilms that can enhance resistance to antibiotics and immune defenses. P. aeruginosa biofilm formation is dependent on the secretion of matrix exopolysaccharides, including Pel and Psl. In this study, recombinant glycoside hydrolases (GHs) that degrade Pel and Psl were evaluated alone and in combination with antibiotics in a mouse model of P. aeruginosa infection. Intratracheal GH administration was well tolerated by mice. Pharmacokinetic analysis revealed that, although GHs have short half-lives, administration of two GHs in combination resulted in increased GH persistence. Combining GH prophylaxis and treatment with the antibiotic ciprofloxacin resulted in greater reduction in pulmonary bacterial burden than that with either agent alone. This study lays the foundation for further exploration of GH therapy in bacterial infections.


Assuntos
Infecções por Pseudomonas , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Glicosídeo Hidrolases/metabolismo , Pulmão/metabolismo , Camundongos , Polissacarídeos Bacterianos/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo
5.
Mol Microbiol ; 114(6): 920-933, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32491277

RESUMO

Biofilm formation is a co-operative behaviour, where microbial cells become embedded in an extracellular matrix. This biomolecular matrix helps manifest the beneficial or detrimental outcome mediated by the collective of cells. Bacillus subtilis is an important bacterium for understanding the principles of biofilm formation. The protein components of the B. subtilis matrix include the secreted proteins BslA, which forms a hydrophobic coat over the biofilm, and TasA, which forms protease-resistant fibres needed for structuring. TapA is a secreted protein also needed for biofilm formation and helps in vivo TasA-fibre formation but is dispensable for in vitro TasA-fibre assembly. We show that TapA is subjected to proteolytic cleavage in the colony biofilm and that only the first 57 amino acids of the 253-amino acid protein are required for colony biofilm architecture. Through the construction of a strain which lacks all eight extracellular proteases, we show that proteolytic cleavage by these enzymes is not a prerequisite for TapA function. It remains unknown why TapA is synthesised at 253 amino acids when the first 57 are sufficient for colony biofilm structuring; the findings do not exclude the core conserved region of TapA having a second role beyond structuring the B. subtilis colony biofilm.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas da Matriz Extracelular/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas da Matriz Extracelular/genética , Regulação Bacteriana da Expressão Gênica , Deleção de Sequência
6.
J Biol Chem ; 294(28): 10760-10772, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31167793

RESUMO

During infection, the fungal pathogen Aspergillus fumigatus forms biofilms that enhance its resistance to antimicrobials and host defenses. An integral component of the biofilm matrix is galactosaminogalactan (GAG), a cationic polymer of α-1,4-linked galactose and partially deacetylated N-acetylgalactosamine (GalNAc). Recent studies have shown that recombinant hydrolase domains from Sph3, an A. fumigatus glycoside hydrolase involved in GAG synthesis, and PelA, a multifunctional protein from Pseudomonas aeruginosa involved in Pel polysaccharide biosynthesis, can degrade GAG, disrupt A. fumigatus biofilms, and attenuate fungal virulence in a mouse model of invasive aspergillosis. The molecular mechanisms by which these enzymes disrupt biofilms have not been defined. We hypothesized that the hydrolase domains of Sph3 and PelA (Sph3h and PelAh, respectively) share structural and functional similarities given their ability to degrade GAG and disrupt A. fumigatus biofilms. MALDI-TOF enzymatic fingerprinting and NMR experiments revealed that both proteins are retaining endo-α-1,4-N-acetylgalactosaminidases with a minimal substrate size of seven residues. The crystal structure of PelAh was solved to 1.54 Å and structure alignment to Sph3h revealed that the enzymes share similar catalytic site residues. However, differences in the substrate-binding clefts result in distinct enzyme-substrate interactions. PelAh hydrolyzed partially deacetylated substrates better than Sph3h, a finding that agrees well with PelAh's highly electronegative binding cleft versus the neutral surface present in Sph3h Our insight into PelAh's structure and function necessitate the creation of a new glycoside hydrolase family, GH166, whose structural and mechanistic features, along with those of GH135 (Sph3), are reported here.


Assuntos
Biofilmes/efeitos dos fármacos , Glicosídeo Hidrolases/metabolismo , Polissacarídeo-Liases/ultraestrutura , Anti-Infecciosos/metabolismo , Aspergillus fumigatus/metabolismo , Biofilmes/crescimento & desenvolvimento , Domínio Catalítico , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Glicosídeo Hidrolases/fisiologia , Hidrólise , Polissacarídeo-Liases/metabolismo , Polissacarídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Especificidade por Substrato/fisiologia , Virulência
7.
J Biol Chem ; 294(37): 13833-13849, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31416836

RESUMO

Aspergillus fumigatus is an opportunistic fungal pathogen that causes both chronic and acute invasive infections. Galactosaminogalactan (GAG) is an integral component of the A. fumigatus biofilm matrix and a key virulence factor. GAG is a heterogeneous linear α-1,4-linked exopolysaccharide of galactose and GalNAc that is partially deacetylated after secretion. A cluster of five co-expressed genes has been linked to GAG biosynthesis and modification. One gene in this cluster, ega3, is annotated as encoding a putative α-1,4-galactosaminidase belonging to glycoside hydrolase family 114 (GH114). Herein, we show that recombinant Ega3 is an active glycoside hydrolase that disrupts GAG-dependent A. fumigatus and Pel polysaccharide-dependent Pseudomonas aeruginosa biofilms at nanomolar concentrations. Using MS and functional assays, we demonstrate that Ega3 is an endo-acting α-1,4-galactosaminidase whose activity depends on the conserved acidic residues, Asp-189 and Glu-247. X-ray crystallographic structural analysis of the apo Ega3 and an Ega3-galactosamine complex, at 1.76 and 2.09 Å resolutions, revealed a modified (ß/α)8-fold with a deep electronegative cleft, which upon ligand binding is capped to form a tunnel. Our structural analysis coupled with in silico docking studies also uncovered the molecular determinants for galactosamine specificity and substrate binding at the -2 to +1 binding subsites. The findings in this study increase the structural and mechanistic understanding of the GH114 family, which has >600 members encoded by plant and opportunistic human pathogens, as well as in industrially used bacteria and fungi.


Assuntos
Aspergillus fumigatus/metabolismo , Glicosídeo Hidrolases/genética , Hexosaminidases/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/ultraestrutura , Biofilmes/efeitos dos fármacos , Cristalografia por Raios X/métodos , Proteínas Fúngicas/genética , Fungos/metabolismo , Glicosídeo Hidrolases/metabolismo , Hexosaminidases/farmacologia , Hexosaminidases/ultraestrutura , Polissacarídeos/metabolismo , Virulência
8.
PLoS Pathog ; 14(4): e1006998, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29684093

RESUMO

Poly-ß(1,6)-N-acetyl-D-glucosamine (PNAG) is a major biofilm component of many pathogenic bacteria. The production, modification, and export of PNAG in Escherichia coli and Bordetella species require the protein products encoded by the pgaABCD operon. PgaB is a two-domain periplasmic protein that contains an N-terminal deacetylase domain and a C-terminal PNAG binding domain that is critical for export. However, the exact function of the PgaB C-terminal domain remains unclear. Herein, we show that the C-terminal domains of Bordetella bronchiseptica PgaB (PgaBBb) and E. coli PgaB (PgaBEc) function as glycoside hydrolases. These enzymes hydrolyze purified deacetylated PNAG (dPNAG) from Staphylococcus aureus, disrupt PNAG-dependent biofilms formed by Bordetella pertussis, Staphylococcus carnosus, Staphylococcus epidermidis, and E. coli, and potentiate bacterial killing by gentamicin. Furthermore, we found that PgaBBb was only able to hydrolyze PNAG produced in situ by the E. coli PgaCD synthase complex when an active deacetylase domain was present. Mass spectrometry analysis of the PgaB-hydrolyzed dPNAG substrate showed a GlcN-GlcNAc-GlcNAc motif at the new reducing end of detected fragments. Our 1.76 Å structure of the C-terminal domain of PgaBBb reveals a central cavity within an elongated surface groove that appears ideally suited to recognize the GlcN-GlcNAc-GlcNAc motif. The structure, in conjunction with molecular modeling and site directed mutagenesis led to the identification of the dPNAG binding subsites and D474 as the probable catalytic acid. This work expands the role of PgaB within the PNAG biosynthesis machinery, defines a new glycoside hydrolase family GH153, and identifies PgaB as a possible therapeutic agent for treating PNAG-dependent biofilm infections.


Assuntos
Amidoidrolases/metabolismo , Biofilmes/crescimento & desenvolvimento , Bordetella/enzimologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Glicosídeo Hidrolases/metabolismo , beta-Glucanas/química , Acetilação , Amidoidrolases/química , Bordetella/crescimento & desenvolvimento , Cristalografia por Raios X , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Glicosídeo Hidrolases/química , Óperon , Conformação Proteica , beta-Glucanas/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(27): 7124-7129, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28634301

RESUMO

Galactosaminogalactan and Pel are cationic heteropolysaccharides produced by the opportunistic pathogens Aspergillus fumigatus and Pseudomonas aeruginosa, respectively. These exopolysaccharides both contain 1,4-linked N-acetyl-d-galactosamine and play an important role in biofilm formation by these organisms. Proteins containing glycoside hydrolase domains have recently been identified within the biosynthetic pathway of each exopolysaccharide. Recombinant hydrolase domains from these proteins (Sph3h from A. fumigatus and PelAh from P. aeruginosa) were found to degrade their respective polysaccharides in vitro. We therefore hypothesized that these glycoside hydrolases could exhibit antibiofilm activity and, further, given the chemical similarity between galactosaminogalactan and Pel, that they might display cross-species activity. Treatment of A. fumigatus with Sph3h disrupted A. fumigatus biofilms with an EC50 of 0.4 nM. PelAh treatment also disrupted preformed A. fumigatus biofilms with EC50 values similar to those obtained for Sph3h In contrast, Sph3h was unable to disrupt P. aeruginosa Pel-based biofilms, despite being able to bind to the exopolysaccharide. Treatment of A. fumigatus hyphae with either Sph3h or PelAh significantly enhanced the activity of the antifungals posaconazole, amphotericin B, and caspofungin, likely through increasing antifungal penetration of hyphae. Both enzymes were noncytotoxic and protected A549 pulmonary epithelial cells from A. fumigatus-induced cell damage for up to 24 h. Intratracheal administration of Sph3h was well tolerated and reduced pulmonary fungal burden in a neutropenic mouse model of invasive aspergillosis. These findings suggest that glycoside hydrolases can exhibit activity against diverse microorganisms and may be useful as therapeutic agents by degrading biofilms and attenuating virulence.


Assuntos
Aspergilose/terapia , Aspergillus fumigatus/enzimologia , Proteínas de Bactérias/química , Biofilmes , Glicosídeo Hidrolases/química , Pseudomonas aeruginosa/enzimologia , Células A549 , Animais , Anti-Infecciosos/química , Antifúngicos/química , Aspergilose/microbiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Polissacarídeos/química , Especificidade da Espécie , Virulência
10.
Biochemistry ; 57(13): 1949-1953, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29522326

RESUMO

Bacterial surface (S) layers are paracrystalline arrays of protein assembled on the bacterial cell wall that serve as protective barriers and scaffolds for housekeeping enzymes and virulence factors. The attachment of S-layer proteins to the cell walls of the Bacillus cereus sensu lato, which includes the pathogen Bacillus anthracis, occurs through noncovalent interactions between their S-layer homology domains and secondary cell wall polysaccharides. To promote these interactions, it is presumed that the terminal N-acetylmannosamine (ManNAc) residues of the secondary cell wall polysaccharides must be ketal-pyruvylated. For a few specific S-layer proteins, the O-acetylation of the penultimate N-acetylglucosamine (GlcNAc) is also required. Herein, we present the X-ray crystal structure of the SLH domain of the major surface array protein Sap from B. anthracis in complex with 4,6- O-ketal-pyruvyl-ß-ManNAc-(1,4)-ß-GlcNAc-(1,6)-α-GlcN. This structure reveals for the first time that the conserved terminal SCWP unit is the direct ligand for the SLH domain. Furthermore, we identify key binding interactions that account for the requirement of 4,6- O-ketal-pyruvyl-ManNAc while revealing the insignificance of the O-acetylation on the GlcNAc residue for recognition by Sap.


Assuntos
Acetilglucosamina/química , Bacillus anthracis/química , Parede Celular/química , Hexosaminas/química , Glicoproteínas de Membrana/química , Polissacarídeos Bacterianos/química , Acetilglucosamina/metabolismo , Bacillus anthracis/metabolismo , Parede Celular/metabolismo , Cristalografia por Raios X , Hexosaminas/metabolismo , Glicoproteínas de Membrana/metabolismo , Polissacarídeos Bacterianos/metabolismo , Domínios Proteicos
11.
Proc Natl Acad Sci U S A ; 111(30): 11013-8, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24994902

RESUMO

Poly-ß-1,6-N-acetyl-D-glucosamine (PNAG) is an exopolysaccharide produced by a wide variety of medically important bacteria. Polyglucosamine subunit B (PgaB) is responsible for the de-N-acetylation of PNAG, a process required for polymer export and biofilm formation. PgaB is located in the periplasm and likely bridges the inner membrane synthesis and outer membrane export machinery. Here, we present structural, functional, and molecular simulation data that suggest PgaB associates with PNAG continuously during periplasmic transport. We show that the association of PgaB's N- and C-terminal domains forms a cleft required for the binding and de-N-acetylation of PNAG. Molecular dynamics (MD) simulations of PgaB show a binding preference for N-acetylglucosamine (GlcNAc) to the N-terminal domain and glucosammonium to the C-terminal domain. Continuous ligand binding density is observed that extends around PgaB from the N-terminal domain active site to an electronegative groove on the C-terminal domain that would allow for a processive mechanism. PgaB's C-terminal domain (PgaB310-672) directly binds PNAG oligomers with dissociation constants of ∼1-3 mM, and the structures of PgaB310-672 in complex with ß-1,6-(GlcNAc)6, GlcNAc, and glucosamine reveal a unique binding mode suitable for interaction with de-N-acetylated PNAG (dPNAG). Furthermore, PgaB310-672 contains a ß-hairpin loop (ßHL) important for binding PNAG that was disordered in previous PgaB42-655 structures and is highly dynamic in the MD simulations. We propose that conformational changes in PgaB310-672 mediated by the ßHL on binding of PNAG/dPNAG play an important role in the targeting of the polymer for export and its release.


Assuntos
Amidoidrolases/química , Biofilmes , Proteínas de Escherichia coli/química , Escherichia coli/fisiologia , Periplasma/química , Polissacarídeos Bacterianos/química , beta-Glucanas/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Transporte Biológico Ativo/fisiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Periplasma/genética , Periplasma/metabolismo , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , beta-Glucanas/metabolismo
12.
J Biol Chem ; 290(37): 22827-40, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26203190

RESUMO

Bordetella pertussis and Bordetella bronchiseptica are the causative agents of whooping cough in humans and a variety of respiratory diseases in animals, respectively. Bordetella species produce an exopolysaccharide, known as the Bordetella polysaccharide (Bps), which is encoded by the bpsABCD operon. Bps is required for Bordetella biofilm formation, colonization of the respiratory tract, and confers protection from complement-mediated killing. In this report, we have investigated the role of BpsB in the biosynthesis of Bps and biofilm formation by B. bronchiseptica. BpsB is a two-domain protein that localizes to the periplasm and outer membrane. BpsB displays metal- and length-dependent deacetylation on poly-ß-1,6-N-acetyl-d-glucosamine (PNAG) oligomers, supporting previous immunogenic data that suggests Bps is a PNAG polymer. BpsB can use a variety of divalent metal cations for deacetylase activity and showed highest activity in the presence of Ni(2+) and Co(2+). The structure of the BpsB deacetylase domain is similar to the PNAG deacetylases PgaB and IcaB and contains the same circularly permuted family four carbohydrate esterase motifs. Unlike PgaB from Escherichia coli, BpsB is not required for polymer export and has unique structural differences that allow the N-terminal deacetylase domain to be active when purified in isolation from the C-terminal domain. Our enzymatic characterizations highlight the importance of conserved active site residues in PNAG deacetylation and demonstrate that the C-terminal domain is required for maximal deacetylation of longer PNAG oligomers. Furthermore, we show that BpsB is critical for the formation and complex architecture of B. bronchiseptica biofilms.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Biofilmes/crescimento & desenvolvimento , Bordetella bronchiseptica/fisiologia , beta-Glucanas/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobalto/química , Cobalto/metabolismo , Níquel/química , Níquel/metabolismo , Estrutura Terciária de Proteína , beta-Glucanas/metabolismo
13.
J Biol Chem ; 290(46): 27438-50, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26342082

RESUMO

Aspergillus fumigatus is the most virulent species within the Aspergillus genus and causes invasive infections with high mortality rates. The exopolysaccharide galactosaminogalactan (GAG) contributes to the virulence of A. fumigatus. A co-regulated five-gene cluster has been identified and proposed to encode the proteins required for GAG biosynthesis. One of these genes, sph3, is predicted to encode a protein belonging to the spherulin 4 family, a protein family with no known function. Construction of an sph3-deficient mutant demonstrated that the gene is necessary for GAG production. To determine the role of Sph3 in GAG biosynthesis, we determined the structure of Aspergillus clavatus Sph3 to 1.25 Å. The structure revealed a (ß/α)8 fold, with similarities to glycoside hydrolase families 18, 27, and 84. Recombinant Sph3 displayed hydrolytic activity against both purified and cell wall-associated GAG. Structural and sequence alignments identified three conserved acidic residues, Asp-166, Glu-167, and Glu-222, that are located within the putative active site groove. In vitro and in vivo mutagenesis analysis demonstrated that all three residues are important for activity. Variants of Asp-166 yielded the greatest decrease in activity suggesting a role in catalysis. This work shows that Sph3 is a glycoside hydrolase essential for GAG production and defines a new glycoside hydrolase family, GH135.


Assuntos
Aspergillus fumigatus/metabolismo , Coccidioidina/química , Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Polissacarídeos/biossíntese , Sequência de Aminoácidos , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Catálise , Domínio Catalítico , Parede Celular/enzimologia , Coccidioidina/genética , Coccidioidina/fisiologia , Sequência Conservada , Cristalografia por Raios X , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/fisiologia , Hidrólise , Dados de Sequência Molecular , Mutação , Polissacarídeos/genética , Conformação Proteica , Alinhamento de Sequência
14.
J Biol Chem ; 289(52): 35907-17, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25359777

RESUMO

Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In staphylococci, partial de-N-acetylation of the exopolysaccharide poly-ß-1,6-N-acetyl-d-glucosamine (PNAG) by the extracellular protein IcaB is required for biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of IcaB from Ammonifex degensii (IcaBAd) has been determined to 1.7 Å resolution. The structure of IcaBAd reveals a (ß/α)7 barrel common to the family four carbohydrate esterases (CE4s) with the canonical motifs circularly permuted. The metal dependence of IcaBAd is similar to most CE4s showing the maximum rates of de-N-acetylation with Ni(2+), Co(2+), and Zn(2+). From docking studies with ß-1,6-GlcNAc oligomers and structural comparison to PgaB from Escherichia coli, the Gram-negative homologue of IcaB, we identify Arg-45, Tyr-67, and Trp-180 as key residues for PNAG binding during catalysis. The absence of these residues in PgaB provides a rationale for the requirement of a C-terminal domain for efficient deacetylation of PNAG in Gram-negative species. Mutational analysis of conserved active site residues suggests that IcaB uses an altered catalytic mechanism in comparison to other characterized CE4 members. Furthermore, we identified a conserved surface-exposed hydrophobic loop found only in Gram-positive homologues of IcaB. Our data suggest that this loop is required for membrane association and likely anchors IcaB to the membrane during polysaccharide biosynthesis. The work presented herein will help guide the design of IcaB inhibitors to combat biofilm formation by staphylococci.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Bacilos Gram-Positivos Formadores de Endosporo/enzimologia , beta-Glucanas/química , Acetilação , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Zinco/química
15.
J Fungi (Basel) ; 8(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35448567

RESUMO

The mold Aspergillus fumigatus and bacterium Pseudomonas aeruginosa form biofilms in the airways of individuals with cystic fibrosis. Biofilm formation by A. fumigatus depends on the self-produced cationic exopolysaccharide galactosaminogalactan (GAG), while P. aeruginosa biofilms can contain the cationic exopolysaccharide Pel. GAG and Pel are rendered cationic by deacetylation mediated by either the secreted deacetylase Agd3 (A. fumigatus) or the periplasmic deacetylase PelA (P. aeruginosa). Given the similarities between these polymers, the potential for biofilm interactions between these organisms were investigated. P. aeruginosa were observed to adhere to A. fumigatus hyphae in a GAG-dependent manner and to GAG-coated coverslips of A. fumigatus biofilms. In biofilm adherence assays, incubation of P. aeruginosa with A. fumigatus culture supernatants containing de-N-acetylated GAG augmented the formation of adherent P. aeruginosa biofilms, increasing protection against killing by the antibiotic colistin. Fluorescence microscopy demonstrated incorporation of GAG within P. aeruginosa biofilms, suggesting that GAG can serve as an alternate biofilm exopolysaccharide for this bacterium. In contrast, Pel-containing bacterial culture supernatants only augmented the formation of adherent A. fumigatus biofilms when antifungal inhibitory molecules were removed. This study demonstrates biofilm interaction via exopolysaccharides as a potential mechanism of co-operation between these organisms in chronic lung disease.

16.
Nat Rev Microbiol ; 19(9): 600-614, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33824496

RESUMO

Biofilm formation is a process in which microbial cells aggregate to form collectives that are embedded in a self-produced extracellular matrix. Bacillus subtilis is a Gram-positive bacterium that is used to dissect the mechanisms controlling matrix production and the subsequent transition from a motile planktonic cell state to a sessile biofilm state. The collective nature of life in a biofilm allows emergent properties to manifest, and B. subtilis biofilms are linked with novel industrial uses as well as probiotic and biocontrol processes. In this Review, we outline the molecular details of the biofilm matrix and the regulatory pathways and external factors that control its production. We explore the beneficial outcomes associated with biofilms. Finally, we highlight major advances in our understanding of concepts of microbial evolution and community behaviour that have resulted from studies of the innate heterogeneity of biofilms.


Assuntos
Bacillus subtilis/fisiologia , Biofilmes/crescimento & desenvolvimento , Interações Microbianas/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia
17.
mBio ; 12(5): e0244621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34579578

RESUMO

Aspergillus fumigatus is a ubiquitous mold that can cause invasive pulmonary infections in immunocompromised patients. Within the lung, A. fumigatus forms biofilms that can enhance resistance to antifungals and immune defenses. Aspergillus biofilm formation requires the production of a cationic matrix exopolysaccharide, galactosaminogalactan (GAG). In this study, recombinant glycoside hydrolases (GH)s that degrade GAG were evaluated as antifungal agents in a mouse model of invasive aspergillosis. Intratracheal GH administration was well tolerated by mice. Pharmacokinetic analysis revealed that although GHs have short half-lives, GH prophylaxis resulted in reduced fungal burden in leukopenic mice and improved survival in neutropenic mice, possibly through augmenting pulmonary neutrophil recruitment. Combining GH prophylaxis with posaconazole treatment resulted in a greater reduction in fungal burden than either agent alone. This study lays the foundation for further exploration of GH therapy in invasive fungal infections. IMPORTANCE The biofilm-forming mold Aspergillus fumigatus is a common causative agent of invasive fungal airway disease in patients with a compromised immune system or chronic airway disease. Treatment of A. fumigatus infection is limited by the few available antifungals to which fungal resistance is becoming increasingly common. The high mortality rate of A. fumigatus-related infection reflects a need for the development of novel therapeutic strategies. The fungal biofilm matrix is in part composed of the adhesive exopolysaccharide galactosaminogalactan, against which antifungals are less effective. Previously, we demonstrated antibiofilm activity with recombinant forms of the glycoside hydrolase enzymes that are involved in galactosaminogalactan biosynthesis. In this study, prophylaxis with glycoside hydrolases alone or in combination with the antifungal posaconazole in a mouse model of experimental aspergillosis improved outcomes. This study offers insight into the therapeutic potential of combining biofilm disruptive agents to leverage the activity of currently available antifungals.


Assuntos
Antifúngicos/administração & dosagem , Aspergillus fumigatus/patogenicidade , Biofilmes/efeitos dos fármacos , Glicosídeo Hidrolases/administração & dosagem , Glicosídeo Hidrolases/genética , Aspergilose Pulmonar Invasiva/prevenção & controle , Animais , Antifúngicos/farmacocinética , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Glicosídeo Hidrolases/farmacocinética , Aspergilose Pulmonar Invasiva/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Neutropenia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Virulência
18.
Nat Commun ; 11(1): 2450, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415073

RESUMO

The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Deletion of a gene encoding a putative deacetylase, Agd3, leads to defects in GAG deacetylation, biofilm formation, and virulence. Here, we show that Agd3 deacetylates GAG in a metal-dependent manner, and is the founding member of carbohydrate esterase family CE18. The active site is formed by four catalytic motifs that are essential for activity. The structure of Agd3 includes an elongated substrate-binding cleft formed by a carbohydrate binding module (CBM) that is the founding member of CBM family 87. Agd3 homologues are encoded in previously unidentified putative bacterial exopolysaccharide biosynthetic operons and in other fungal genomes.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/fisiologia , Biofilmes/crescimento & desenvolvimento , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Acetilação , Sequência de Aminoácidos , Aspergillus fumigatus/genética , Domínio Catalítico , Sequência Conservada , Regulação Fúngica da Expressão Gênica , Glicosaminoglicanos/biossíntese , Metais/metabolismo , Domínios Proteicos , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Fatores de Tempo
19.
mBio ; 7(2): e00252-16, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27048799

RESUMO

UNLABELLED: The mold Aspergillus fumigatus causes invasive infection in immunocompromised patients. Recently, galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetylgalactosamine (GalNAc), was identified as a virulence factor required for biofilm formation. The molecular mechanisms underlying GAG biosynthesis and GAG-mediated biofilm formation were unknown. We identified a cluster of five coregulated genes that were dysregulated in GAG-deficient mutants and whose gene products share functional similarity with proteins that mediate the synthesis of the bacterial biofilm exopolysaccharide poly-(ß1-6)-N-acetyl-D-glucosamine (PNAG). Bioinformatic analyses suggested that the GAG cluster gene agd3 encodes a protein containing a deacetylase domain. Because deacetylation of N-acetylglucosamine residues is critical for the function of PNAG, we investigated the role of GAG deacetylation in fungal biofilm formation. Agd3 was found to mediate deacetylation of GalNAc residues within GAG and render the polysaccharide polycationic. As with PNAG, deacetylation is required for the adherence of GAG to hyphae and for biofilm formation. Growth of the Δagd3 mutant in the presence of culture supernatants of the GAG-deficient Δuge3 mutant rescued the biofilm defect of the Δagd3 mutant and restored the adhesive properties of GAG, suggesting that deacetylation is an extracellular process. The GAG biosynthetic gene cluster is present in the genomes of members of the Pezizomycotina subphylum of the Ascomycota including a number of plant-pathogenic fungi and a single basidiomycete species,Trichosporon asahii, likely a result of recent horizontal gene transfer. The current study demonstrates that the production of cationic, deacetylated exopolysaccharides is a strategy used by both fungi and bacteria for biofilm formation. IMPORTANCE: This study sheds light on the biosynthetic pathways governing the synthesis of galactosaminogalactan (GAG), which plays a key role in A. fumigatus virulence and biofilm formation. We find that bacteria and fungi use similar strategies to synthesize adhesive biofilm exopolysaccharides. The presence of orthologs of the GAG biosynthetic gene clusters in multiple fungi suggests that this exopolysaccharide may also be important in the virulence of other fungal pathogens. Further, these studies establish a molecular mechanism of adhesion in which GAG interacts via charge-charge interactions to bind to both fungal hyphae and other substrates. Finally, the importance of deacetylation in the synthesis of functional GAG and the extracellular localization of this process suggest that inhibition of deacetylation may be an attractive target for the development of novel antifungal therapies.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/fisiologia , Biofilmes , Polissacarídeos/metabolismo , Acetilação , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA