Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 478(7367): 57-63, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21937992

RESUMO

Common diseases are often complex because they are genetically heterogeneous, with many different genetic defects giving rise to clinically indistinguishable phenotypes. This has been amply documented for early-onset cognitive impairment, or intellectual disability, one of the most complex disorders known and a very important health care problem worldwide. More than 90 different gene defects have been identified for X-chromosome-linked intellectual disability alone, but research into the more frequent autosomal forms of intellectual disability is still in its infancy. To expedite the molecular elucidation of autosomal-recessive intellectual disability, we have now performed homozygosity mapping, exon enrichment and next-generation sequencing in 136 consanguineous families with autosomal-recessive intellectual disability from Iran and elsewhere. This study, the largest published so far, has revealed additional mutations in 23 genes previously implicated in intellectual disability or related neurological disorders, as well as single, probably disease-causing variants in 50 novel candidate genes. Proteins encoded by several of these genes interact directly with products of known intellectual disability genes, and many are involved in fundamental cellular processes such as transcription and translation, cell-cycle control, energy metabolism and fatty-acid synthesis, which seem to be pivotal for normal brain development and function.


Assuntos
Transtornos Cognitivos/genética , Genes Recessivos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Deficiência Intelectual/genética , Encéfalo/metabolismo , Encéfalo/fisiologia , Ciclo Celular , Consanguinidade , Análise Mutacional de DNA , Éxons/genética , Redes Reguladoras de Genes , Genes Essenciais/genética , Homozigoto , Humanos , Redes e Vias Metabólicas , Mutação/genética , Especificidade de Órgãos , Sinapses/metabolismo
2.
Mol Neurobiol ; 54(3): 2234-2240, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26941103

RESUMO

Neurological disorders include a wide variety of mostly multifactorial diseases related to the development, survival, and function of the neuron cells. Single-nucleotide polymorphisms (SNPs) have been extensively studied in neurological disorders, and in a number of instances have been reproducibly linked to disease as risk factors. The RIT2 gene has been recently shown to be associated with a number of neurological disorders, such as Parkinson's disease (PD) and autism. In the study reported here, we investigated the association of the rs12456492 and rs16976358 SNPs of the RIT2 gene with PD, essential tremor (ET), autism, schizophrenia (SCZ), and bipolar disorder (BPD; total of 2290 patients), and 1000 controls, by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Significant association was observed between rs12456492 and two disorders, PD and ET, whereas rs16976358 was found to be associated with autism, SCZ, and BPD. Our findings are indicative of differential association between the RIT2 SNPs and different neurological disorders.


Assuntos
Predisposição Genética para Doença , Proteínas Monoméricas de Ligação ao GTP/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Povo Asiático/genética , Transtorno Autístico/genética , Transtorno Bipolar/genética , Tremor Essencial/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/genética , Reação em Cadeia da Polimerase/métodos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA