Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(3): 849-856, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38228290

RESUMO

In this study, aggregation-induced photon upconversion (iPUC) is demonstrated in the small polyaromatic molecule, pyrene. In binary-solvent mixtures, water, which induces the aggregation of polyaromatic molecules, assisted in triplet-triplet annihilation-based upconversion. No upconverted emission was observed in a dry solvent. Although upconverted emission in the absence of a triplet sensitizer was assigned to pyrene-aggregate-induced sensitization, the presence of a triplet sensitizer enhanced the upconversion efficiency. This experimental finding was further simulated to explore the possibility of iPUC in the condensed-phase polymer matrix. We studied 2-aminoethyl methacrylate hydrochloride-polystyrene copolymer nanoparticles embedded with the molecular upconversion system. The nanoparticle iPUC agreed with the proposition that water domains were present in polymer nanoparticles and helped aggregate pyrene in the host polymer. Despite the low systemic upconversion efficiency, this study provides a method for achieving fluorescence upconversion in relatively simple systems.

2.
Chempluschem ; : e202400317, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943687

RESUMO

The sluggishness of the complementary oxygen evolution reaction (OER) is reckoned as one of the major drawbacks in developing an energy-efficient green hydrogen-producing electrolyzer. An array of organic molecule oxidation reactions, operational at a relatively low potential, have been explored as a substitute for the OER. Glycerol oxidation reaction (GOR) has emerged as a leading alternative in this context because glycerol, a waste of biodiesel manufacturing, has become ubiquitous and accessible due to the significant growth in the biodiesel sector in recent decades. Additionally, the GOR generates several value-added organic compounds following oxidation that enhance the cost viability of the overall electrolysis reaction. In this study, a low-cost, room temperature operable, and energy-efficient synthetic methodology has been developed to generate unique two-dimensional CuO nanosheets (CuO NS). This CuO NS material was embedded on a carbon paper electrode, which showcased excellent glycerol electro-oxidation performance operational at a moderately low applied potential. Formic acid is the major product of this CuO NS-driven GOR (Faradaic efficiency ~80 %), as it is formed primarily via the glyceraldehyde oxidation pathway. This CuO NS material was also active for oxidizing other abundant alcohols like ethylene glycol and diethylene glycol, albeit at a relatively poor efficiency. Therefore, this robust CuO NS material has displayed the potential to be used in large-scale electrolyzers functioning with HER/GOR reactions.

3.
J Pharm Bioallied Sci ; 16(Suppl 1): S60-S62, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595361

RESUMO

Natural products have received a lot of attention in a variety of medical sectors, including dentistry. Cissus, a flowering plant genus, has long been used for its therapeutic benefits. The purpose of this review is to thoroughly investigate the possibilities of Cissus extracts in dentistry. To that end, we used specific selection criteria for the selection of pertinent scientific articles published in the scientific information databases of PubMed, Web of Science, Google Scholar, Scopus, and ProQuest. We found that the diverse array of bioactive compounds found in varied species of Cissus holds promise for applications ranging from oral wound healing to periodontal health. This review summarizes known studies on antibacterial, anti-inflammatory, and tissue-regenerative characteristics of Cissus extracts, shedding light on their potential significance in modernizing modern dental practices. It exerts that Cissus extracts have the potential to supplement established dentistry therapies by providing all-natural remedies for a variety of oral health conditions.

4.
Chem Commun (Camb) ; 60(31): 4148-4169, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38563372

RESUMO

Hydrogen obtained from renewable sources such as water and alcohols is regarded as an efficient clean-burning alternative to non-renewable fuels. The use of the so-called bio-H2 regardless of its colour will be a significant step towards achieving global net-zero carbon goals. Challenges still persist however with conventional H2 storage, which include low-storage density and high cost of transportation apart from safety concerns. Global efforts have thus focussed on liquid organic hydrogen carriers (LOHCs), which have shown excellent potential for H2 storage while allowing safer large-scale transformation and easy on-site H2 generation. While water could be considered as the most convenient liquid inorganic hydrogen carrier (LIHC) on a long-term basis, the utilization of alcohols as LOHCs to generate on-demand H2 has tasted instant success. This has helped to draw a road-map of futuristic H2 storage and transportation. The current review brings to the fore the state-of-the-art developments in hydrogen generation from readily available, feed-agnostic bio-alcohols as LOHCs using molecular transition-metal catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA