Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(14): 141101, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25166974

RESUMO

We present two new primary mechanisms for the synthesis of the rare nucleus (9)Be, both triggered by ν-induced production of (3)H followed by (4)He((3)H,γ)(7)Li in the He shells of core-collapse supernovae. For progenitors of ∼ 8M(⊙), (7)Li((3)H,n(0))(9)Be occurs during the rapid expansion of the shocked He shell. Alternatively, for ultra-metal-poor progenitors of ∼ 11-15 M(⊙), (7)Li(n,γ)(8)Li(n,γ)(9)Li(e(-)ν(e))(9)Be occurs with neutrons produced by (4)He(ν(e),e(+)n)(3)H, assuming a hard effective ν(e) spectrum from oscillations (which also leads to heavy element production through rapid neutron capture) and a weak explosion (so the (9)Be survives shock passage). We discuss the associated production of (7)Li and (11)B, noting patterns in LiBeB production that might distinguish the new mechanisms from others.

2.
Phys Rev Lett ; 106(20): 201104, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21668217

RESUMO

We revisit a ν-driven r-process mechanism in the He shell of a core-collapse supernova, finding that it could succeed in early stars of metallicity Z ≲ 10⁻³ Z(⊙), at relatively low temperatures and neutron densities, producing A ~ 130 and 195 abundance peaks over ~10-20 s. The mechanism is sensitive to the ν emission model and to ν oscillations. We discuss the implications of an r process that could alter interpretations of abundance data from metal-poor stars, and point out the need for further calculations that include effects of the supernova shock.

3.
Nat Commun ; 7: 13639, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27873999

RESUMO

About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either do not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA