RESUMO
In vitro organoids derived from human pluripotent stem cells (hPSCs) have been developed as essential tools to study the underlying mechanisms of human development and diseases owing to their structural and physiological similarity to corresponding organs. Despite recent advances, there are a few methodologies for three-dimensional (3D) skeletal muscle differentiation, which focus on the terminal differentiation into myofibers and investigate the potential of modeling neuromuscular disorders and muscular dystrophies. However, these methodologies cannot recapitulate the developmental processes and lack regenerative capacity. In this study, we developed a new method to differentiate hPSCs into a 3D human skeletal muscle organoid (hSkMO). This organoid model could recapitulate the myogenesis process and possesses regenerative capacities of sustainable satellite cells (SCs), which are adult muscle stem/progenitor cells capable of self-renewal and myogenic differentiation. Our 3D model demonstrated myogenesis through the sequential occurrence of multiple myogenic cell types from SCs to myocytes. Notably, we detected quiescent, non-dividing SCs throughout the hSkMO differentiation in long-term culture. They were activated and differentiated to reconstitute muscle tissue upon damage. Thus, hSkMOs can recapitulate human skeletal muscle development and regeneration and may provide a new model for studying human skeletal muscles and related diseases.
Assuntos
Organoides , Células-Tronco Pluripotentes , Diferenciação Celular/fisiologia , Humanos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismoRESUMO
Background and Objectives: Spermatogonial stem cells (SSCs) are the most primitive cells in spermatogenesis and are the only adult stem cells capable of passing on the genome of a given species to the next generation. SSCs are the only adult stem cells known to exhibit high Oct4 expression and can be induced to self-reprogram into pluripotent cells depending on culture conditions. Epigenetic modulation is well known to be involved in the induction of pluripotency of somatic cells. However, epigenetic modulation in self-reprogramming of SSCs into pluripotent cells has not been studied. Methods and Results: In this study, we examined the involvement of epigenetic modulation by assessing whether self-reprogramming of SSCs is enhanced by treatment with epigenetic modulators. We found that second-generation selective class I HDAC inhibitors increased SSC reprogramming efficiency, whereas non-selective HDAC inhibitors had no effect. Conclusions: We showed that pluripotent stem cells derived from adult SSCs by treatment with small molecules with epigenetic modulator functions exhibit pluripotency in vitro and in vivo. Our results suggest that the mechanism of SSC reprogramming by epigenetic modulator can be used for important applications in epigenetic reprogramming research.
RESUMO
OCT4 and NANOG are core transcription factor genes in self-renewal, differentiation, and reprogramming. Here, we generated an OCT4-EGFP, NANOG-tdTomato dual reporter hiPSC line, KKUi001-A, on the basis of human induced pluripotent stem cells using CRISPR/Cas9 technology. EGFP and tdTomato reporter were inserted into before the stop codon of OCT4 and NANOG, respectively. Simultaneous expression of EGFP and tdTomato was observed when expression of OCT4 and NANOG was changed during differentiation and reprogramming. KKUi001-A hiPSC line will be a useful tool to find initial time point of OCT4 and NANOG expression during reprogramming process and to screen small molecules that promote reprogramming.
Assuntos
Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Reprogramação Celular , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Luminescentes , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteína Vermelha FluorescenteRESUMO
In humans, parthenogenesis and androgenesis occur naturally in mature cystic ovarian teratomas and androgenetic complete hydatidiform moles (CHM), respectively. Our previous study has reported human parthenogenetic induced pluripotent stem cells from ovarian teratoma-derived fibroblasts and screening of imprinted genes using genome-wide DNA methylation analysis. However, due to the lack of the counterparts of uniparental cells, identification of new imprinted differentially methylated regions has been limited. CHM are inherited from only the paternal genome. In this study, we generated human androgenetic induced pluripotent stem cells (AgHiPSCs) from primary androgenetic fibroblasts derived from CHM. To investigate the pluripotency state of AgHiPSCs, we analyzed their cellular and molecular characteristics. We tested the DNA methylation status of imprinted genes using bisulfite sequencing and demonstrated the androgenetic identity of AgHiPSCs. AgHiPSCs might be an attractive alternative source of human androgenetic embryonic stem cells. Furthermore, AgHiPSCs can be used in regenerative medicine, for analysis of genomic imprinting, to study imprinting-related development, and for disease modeling in humans.
Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Herança Paterna , Diferenciação Celular , Células Cultivadas , Metilação de DNA , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Impressão Genômica , Humanos , Mola Hidatiforme/genética , Mola Hidatiforme/metabolismo , Mola Hidatiforme/fisiopatologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Gravidez , Reprodução AssexuadaRESUMO
BACKGROUND AND OBJECTIVES: Several recent studies have claimed that cancer cells can be reprogrammed into induced pluripotent stem cells (iPSCs). However, in most cases, cancer cells seem to be resistant to cellular reprogramming. Furthermore, the underlying mechanisms of limited reprogramming in cancer cells are largely unknown. Here, we identified the candidate barrier genes and their target genes at the early stage of reprogramming for investigating cancer reprogramming. METHODS: We tried induction of pluripotency in normal human fibroblasts (BJ) and both human benign (MCF10A) and malignant (MCF7) breast cancer cell lines using a classical retroviral reprogramming method. We conducted RNA-sequencing analysis to compare the transcriptome of the three cell lines at early stage of reprogramming. RESULTS: We could generate iPSCs from BJ, whereas we were unable to obtain iPSCs from cancer cell lines. To address the underlying mechanism of limited reprogramming in cancer cells, we identified 29 the candidate barrier genes based on RNA-sequencing data. In addition, we found 40 their target genes using Cytoscape software. CONCLUSIONS: Our data suggest that these genes might one of the roadblock for cancer cell reprogramming. Furthermore, we provide new insights into application of iPSCs technology in cancer cell field for therapeutic purposes.
RESUMO
Generation of induced pluripotent stem cells (iPSCs) by defined factors (OCT4, SOX2, C-MYC, and KLF4) from various human primary cells has been reported. Human fibroblasts have been widely used as a cellular source in reprogramming studies over recent decades. The original method of iPSC generation uses retro- or lentivirus vectors that require integration of viral DNA into the target cells. The integration of exogenous genes encoding transcription factors (OCT4, SOX2, C-MYC, and KLF4) can be detected in iPSCs, raising concern about the risk of mutagenesis and tumor formation. Therefore, stem cell therapy would ideally require generation of integration-free iPSCs using non-integration gene delivery system such as Sendai virus, recombinant proteins, synthetic mRNA, and episomal vectors. Several groups have reported that episomal vectors are capable of reprogramming human fibroblasts into iPSCs. Although vector concentration and cell density are important in the episomal vector reprogramming method, optimization of this method for human fibroblasts has not been reported. In this study, we determined optimal conditions for generating integration-free iPSCs from human fibroblasts through the use of different concentrations of episomal vectors (OCT4/p53, SOX2/KLF4, L-MYC/LIN28A) and different plating cell density. We found that optimized vector concentration and cell density accelerate reprogramming and improve iPSC generation. Our study provides a detailed stepwise protocol for improved generation of integration-free iPSCs from human fibroblasts by transfection with episomal vectors.
RESUMO
Spermatogonial stem cells (SSCs) derived from mouse testis are unipotent in regard of spermatogenesis. Our previous study demonstrated that SSCs can be fully reprogrammed into pluripotent stem cells, so called germline-derived pluripotent stem cells (gPS cells), on feeder cells (mouse embryonic fibroblasts), which supports SSC proliferation and induction of pluripotency. Because of an uncontrollable microenvironment caused by interactions with feeder cells, feeder-based SSC reprogramming is not suitable for elucidation of the self-reprogramming mechanism by which SSCs are converted into pluripotent stem cells. Recently, we have established a Matrigel-based SSC expansion culture system that allows long-term SSC proliferation without mouse embryonic fibroblast support. In this study, we developed a new feeder-free SSC self-reprogramming protocol based on the Matrigel-based culture system. The gPS cells generated using a feeder-free reprogramming system showed pluripotency at the molecular and cellular levels. The differentiation potential of gPS cells was confirmed in vitro and in vivo. Our study shows for the first time that the induction of SSC pluripotency can be achieved without feeder cells. The newly developed feeder-free self-reprogramming system could be a useful tool to reveal the mechanism by which unipotent cells are self-reprogrammed into pluripotent stem cells.
Assuntos
Microambiente Celular , Reprogramação Celular/genética , Células Alimentadoras/citologia , Células-Tronco Pluripotentes/citologia , Espermatogônias/citologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Microambiente Celular/genética , Quimera/metabolismo , Análise Citogenética , Metilação de DNA/genética , Células Alimentadoras/metabolismo , Perfilação da Expressão Gênica , Impressão Genômica/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Pluripotentes/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Espermatogônias/metabolismoRESUMO
Genomic imprinting is the process of epigenetic modification whereby genes are expressed in a parent-of-origin dependent manner; it plays an important role in normal growth and development. Parthenogenetic embryos contain only the maternal genome. Parthenogenetic embryonic stem cells could be useful for studying imprinted genes. In humans, mature cystic ovarian teratomas originate from parthenogenetic activation of oocytes; they are composed of highly differentiated mature tissues containing all three germ layers. To establish human parthenogenetic induced pluripotent stem cell lines (PgHiPSCs), we generated parthenogenetic fibroblasts from ovarian teratoma tissues. We compared global DNA methylation status of PgHiPSCs with that of biparental human induced pluripotent stem cells by using Illumina Infinium HumanMethylation450 BeadChip array. This analysis identified novel single imprinted CpG sites. We further tested DNA methylation patterns of two of these sites using bisulfite sequencing and described novel candidate imprinted CpG sites. These results confirm that PgHiPSCs are a powerful tool for identifying imprinted genes and investigating their roles in human development and diseases.
Assuntos
Metilação de DNA , Impressão Genômica , Células-Tronco Pluripotentes Induzidas/citologia , Neoplasias Ovarianas/genética , Teratoma/genética , Células Cultivadas , Ilhas de CpG , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Neoplasias Ovarianas/patologia , Partenogênese , Análise de Sequência de DNA , Teratoma/patologiaRESUMO
Animal models and human studies showed that in utero cigarette smoke exposure decreases sperm counts of offspring. This study used a mouse model to investigate the effects of maternal exposure to cigarette smoke on reproductive systems in F1 and F2 male offspring. Female ICR mice were exposed either to clean air or to cigarette smoke during pregnancy at the post-implantation stage. Epididymal sperm counts were decreased in a cigarette smoke dose-dependent manner in F1 (by 40-60%) and F2 males (by 23-40%) at postnatal day 56. In F1, the seminiferous epithelium heights were lower in the cigarette smoke-exposed groups than in the control group, and these effects were sustained in F2 males. Results suggest that maternal cigarette smoke exposure during pregnancy can have a multigenerational adverse effect on sperm counts in male offspring, which is mediated through in utero exposure of fetal germ cells to cigarette smoke.
Assuntos
Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Contagem de Espermatozoides , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Implantação do Embrião/efeitos dos fármacos , Feminino , Masculino , Troca Materno-Fetal , Camundongos Endogâmicos ICR , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento , Testículo/patologia , Útero/efeitos dos fármacosRESUMO
Although alternative test methods based on the 3Rs (Replacement, Reduction, Refinement) are being developed to replace animal testing in reproductive and developmental toxicology, they are still in an early stage. Consequently, we aimed to develop alternative test methods in male animals using mouse spermatogonial stem cells (mSSCs). Here, we modified the OECD TG 489 and optimized the in vitro comet assay in our previous study. This study aimed to verify the validity of in vitro tests involving mSSCs by comparing their results with those of in vivo tests using C57BL/6 mice by gavage. We selected hydroxyurea (HU), which is known to chemically induce male reproductive toxicity. The 50% inhibitory concentration (IC50) value of HU was 0.9 mM, as determined by the MTT assay. In the in vitro comet assay, % tail DNA and Olive tail moment (OTM) after HU administration increased significantly, compared to the control. Annexin V, PI staining and TUNEL assays showed that HU caused apoptosis in mSSCs. In order to compare in vitro tests with in vivo tests, the same substances were administered to male C57BL/6 mice. Reproductive toxicity was observed at 25, 50, 100, and 200 mg/kg/day as measured by clinical measures of reduction in sperm motility and testicular weight. The comet assay, DCFH-DA assay, H&E staining, and TUNEL assay were also performed. The results of the test with C57BL/6 mice were similar to those with mSSCs for HU treatment. Finally, linear regression analysis showed a strong positive correlation between results of in vitro tests and those of in vivo. In conclusion, the present study is the first to demonstrate the effect of HU-induced DNA damage, ROS formation, and apoptosis in mSSCs. Further, the results of the current study suggest that mSSCs could be a useful model to predict male reproductive toxicity.
RESUMO
The aim of this study was to investigate the flow fields of blood flowing through the curved bileaflet mechanical heart valve. A numerical analysis was carried out with the fluid-structure interaction between the blood flow and the motion of leaflets in two different types of blood vessels (type A, with sinus blood vessel, and type B, without sinus blood vessel). When the leaflet was fully opened, a fluttering phenomenon was detected in association with the blood flow, and recirculation flows were observed in the sinus region of the blood vessel for type A. During the closing phase, regurgitation was formed between the ring and the edge of the each leaflet for both types. When the leaflet came into contact with the valve ring at the end of the closing phase, rebound of the leaflet occurred. In consideration of the entire domain, the pressure drop occurs mainly in the valve region. The present results showed tendencies similar to those obtained by previous experiments for blood flow and contribute to the development of the curved bileaflet mechanical heart valve prostheses.