Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
medRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37292908

RESUMO

Here we introduce a new endpoint "census population size" to evaluate the epidemiology and control of Plasmodium falciparum infections, where the parasite, rather than the infected human host, is the unit of measurement. To calculate census population size, we rely on a definition of parasite variation known as multiplicity of infection (MOIvar), based on the hyper-diversity of the var multigene family. We present a Bayesian approach to estimate MOIvar from sequencing and counting the number of unique DBLα tags (or DBLα types) of var genes, and derive from it census population size by summation of MOIvar in the human population. We track changes in this parasite population size and structure through sequential malaria interventions by indoor residual spraying (IRS) and seasonal malaria chemoprevention (SMC) from 2012 to 2017 in an area of high-seasonal malaria transmission in northern Ghana. Following IRS, which reduced transmission intensity by > 90% and decreased parasite prevalence by ~40-50%, significant reductions in var diversity, MOIvar, and population size were observed in ~2,000 humans across all ages. These changes, consistent with the loss of diverse parasite genomes, were short lived and 32-months after IRS was discontinued and SMC was introduced, var diversity and population size rebounded in all age groups except for the younger children (1-5 years) targeted by SMC. Despite major perturbations from IRS and SMC interventions, the parasite population remained very large and retained the var population genetic characteristics of a high-transmission system (high var diversity; low var repertoire similarity) demonstrating the resilience of P. falciparum to short-term interventions in high-burden countries of sub-Saharan Africa.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35600674

RESUMO

High-malaria burden countries in sub-Saharan Africa are shifting from malaria control towards elimination. Hence, there is need to gain a contemporary understanding of how indoor residual spraying (IRS) with non-pyrethroid insecticides when combined with long-lasting insecticidal nets (LLINs) impregnated with pyrethroid insecticides, contribute to the efforts of National Malaria Control Programmes to interrupt transmission and reduce the reservoir of Plasmodium falciparum infections across all ages. Using an interrupted time-series study design, four age-stratified malariometric surveys, each of ~2,000 participants, were undertaken pre- and post-IRS in Bongo District, Ghana. Following the application of three-rounds of IRS, P. falciparum transmission intensity declined, as measured by a >90% reduction in the monthly entomological inoculation rate. This decline was accompanied by reductions in parasitological parameters, with participants of all ages being significantly less likely to harbor P. falciparum infections at the end of the wet season post-IRS (aOR = 0.22 [95% CI: 0.19-0.26], p-value < 0.001). In addition, multiplicity of infection (MOI var ) was measured using a parasite fingerprinting tool, designed to capture within-host genome diversity. At the end of the wet season post-IRS, the prevalence of multi-genome infections declined from 75.6% to 54.1%. This study demonstrates that in areas characterized by high seasonal malaria transmission, IRS in combination with LLINs can significantly reduce the reservoir of P. falciparum infection. Nonetheless despite this success, 41.6% of the population, especially older children and adolescents, still harboured multi-genome infections. Given the persistence of this diverse reservoir across all ages, these data highlight the importance of sustaining vector control in combination with targeted chemotherapy to move high-transmission settings towards pre-elimination. This study also points to the benefits of molecular surveillance to ensure that incremental achievements are not lost and that the goals advocated for in the WHO's High Burden to High Impact strategy are realized.

3.
Appl Neuropsychol Child ; 7(1): 1-13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-27463827

RESUMO

We developed a test battery for use among children in Bangladesh, Ghana, and Tanzania, assessing general intelligence, executive functioning, and school achievement. The instruments were drawn from previously published materials and tests. The instruments were adapted and translated in a systematic way to meet the needs of the three assessment contexts. The instruments were administered by a total of 43 trained assessors to 786 children in Bangladesh, Ghana, and Tanzania with a mean age of about 13 years (range: 7-18 years). The battery provides a psychometrically solid basis for evaluating intervention studies in multiple settings. Within-group variation was adequate in each group. The expected positive correlations between test performance and age were found and reliability indices yielded adequate values. A confirmatory factor analysis (not including the literacy and numeracy tests) showed a good fit for a model, merging the intelligence and executive tests in a single factor labeled general intelligence. Measurement weights invariance was found, supporting conceptual equivalence across the three country groups, but not supporting full score comparability across the three countries.


Assuntos
Cognição/fisiologia , Comparação Transcultural , Função Executiva/fisiologia , Inteligência/fisiologia , Psicometria/métodos , Adolescente , Bangladesh , Criança , Análise Fatorial , Feminino , Gana , Humanos , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto , Reprodutibilidade dos Testes , Tanzânia
4.
Vaccine ; 34(38): 4536-4542, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27477844

RESUMO

BACKGROUND: GMZ2 is a recombinant protein malaria vaccine, comprising two blood-stage antigens of Plasmodium falciparum, glutamate-rich protein and merozoite surface protein 3. We assessed efficacy of GMZ2 in children in Burkina Faso, Gabon, Ghana and Uganda. METHODS: Children 12-60months old were randomized to receive three injections of either 100µg GMZ2 adjuvanted with aluminum hydroxide or a control vaccine (rabies) four weeks apart and were followed up for six months to measure the incidence of malaria defined as fever or history of fever and a parasite density ⩾5000/µL. RESULTS: A cohort of 1849 children were randomized, 1735 received three doses of vaccine (868 GMZ2, 867 control-vaccine). There were 641 malaria episodes in the GMZ2/Alum group and 720 in the control group. In the ATP analysis, vaccine efficacy (VE), adjusted for age and site was 14% (95% confidence interval [CI]: 3.6%, 23%, p-value=0.009). In the ITT analysis, age-adjusted VE was 11.3% (95% CI 2.5%, 19%, p-value=0.013). VE was higher in older children. In GMZ2-vaccinated children, the incidence of malaria decreased with increasing vaccine-induced anti-GMZ2 IgG concentration. There were 32 cases of severe malaria (18 in the rabies vaccine group and 14 in the GMZ2 group), VE 27% (95% CI -44%, 63%). CONCLUSIONS: GMZ2 is the first blood-stage malaria vaccine to be evaluated in a large multicenter trial. GMZ2 was well tolerated and immunogenic, and reduced the incidence of malaria, but efficacy would need to be substantially improved, using a more immunogenic formulation, for the vaccine to have a public health role.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Adjuvantes Imunológicos/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , Anticorpos Antiprotozoários/sangue , Burkina Faso , Pré-Escolar , Feminino , Gabão , Gana , Humanos , Imunoglobulina G/sangue , Lactente , Masculino , Plasmodium falciparum , Proteínas Recombinantes de Fusão/imunologia , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA