Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Microbiol ; 80(9): 280, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439951

RESUMO

The impact of fungicide residues on non-target soil bacterial communities is relatively unexplained. We hypothesize that the persistence of fungicide residues in the soil will affect the soil bacterial populations. Persistence depends on biotic and abiotic factors, primarily determined by agricultural activities. Activities such as fallow soil (F), farmyard manure (FYM) amendment, rice straw (RS) mulching, and cultivation of maize (Zea mays) and clover (Trifolium alexandrinum) were used as treatments. The soil CO2 efflux showed no effect of Carbendazim on dormant bacteria (unwatered condition). However, in irrigated condition, Carbendazim enhanced the CO2 efflux by 8, 164, 131, 249, and 182% in fallow, FYM, RS, maize, and Trifolium treatments, respectively. However, 16S rRNA metagenome study after 30 days of carbendazim treatment showed that maize rhizosphere microflora was most susceptible, decreasing the Shannon diversity index from 0.321 to 0.165. Diversity indices generally increased in maize and RS treatments, and Proteobacteria was the most prominent bacterial phyla in the maize rhizosphere. The microbial communities separated into distinct groups on the Principal Co-ordinate analysis (PCoA) plot. The separation on scale 1 (35%) and scale 2 (13%) was based, respectively, on microbial activity and carbendazim treatments. Functionally Maize+Carbendazim treatment showed the highest enzyme activities dehydrogenase (82.25%), acid phosphatase (78.10%), alkaline phosphatase (48.26%), ß-glucosidase (59.99%), protease (126.65%), and urease (50.66%) compared to fallow soil. Overall, Carbendazim enhanced non-target bacterial activity in metabolically active niches, while it did not affect the dormant microflora. Thus, organic amendments and cultivation of fungicide-contaminated soil may help render the contaminant through bacterial activity.


Assuntos
Fungicidas Industriais , Solo , Solo/química , Rizosfera , Fungicidas Industriais/farmacologia , RNA Ribossômico 16S/genética , Dióxido de Carbono , Bactérias/genética , Microbiologia do Solo , Zea mays/microbiologia
2.
Plant Mol Biol ; 110(6): 455-468, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36255595

RESUMO

Tubby-like proteins (TLPs) transcription factors are found in single-celled to multi-cellular eukaryotes in the form of large multigene families. TLPs are identified through a specific signature of carboxyl terminal tubby domain, required for plasma membrane tethering and amino terminal F-box domain communicate as functional SCF-type E3 ligases. The comprehensive distribution of TLP gene family members in diverse species indicates some conserved functions of TLPs in multicellular organisms. Plant TLPs have higher gene members than animals and these members reported important role in multiple physiological and developmental processes and various environmental stress responses. Although the TLPs are suggested to be a putative transcription factors but their functional mechanism is not much clear. This review provides significant recent updates on TLP-mediated regulation with an insight into its functional roles, origin and evolution and also phytohormones related regulation to combat with various stresses and its involvement in adaptive stress response in crop plants.


Assuntos
Plantas , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico , Reguladores de Crescimento de Plantas/metabolismo
3.
Funct Integr Genomics ; 22(4): 625-642, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35426545

RESUMO

To understand drought tolerance mechanism(s) in clusterbean (Cyamopsis tetragonoloba), we conducted physiological, biochemical, and de novo comparative transcriptome analysis of drought-tolerant (RGC-1002) and drought-sensitive (RGC-1066) genotypes subjected to 30 days of drought stress. Relative water content (RWC) was maintained in tolerant genotype but was reduced in sensitive genotype. Leaf pigment concentrations were higher in tolerant genotype. Net photosynthesis was significantly decreased in sensitive genotype but insignificant reduction was found in tolerant genotype. Enzymatic antioxidant (GR, APX, DHAR) activities were enhanced in tolerant genotype, while there were insignificant changes in these enzymes in sensitive genotype. The ratios of antioxidant molecules (ASC/DHA and GSH/GSSG) were higher in tolerant genotype as compared to sensitive genotype. In sensitive genotype, 6625 differentially expressed genes (DEGs) were upregulated and 5365 genes were downregulated. In tolerant genotype, 5206 genes were upregulated and 2793 genes were downregulated. In tolerant genotype, transketolase family protein, phosphoenolpyruvate carboxylase 3, temperature-induced lipocalin, and cytochrome oxidase were highly upregulated. Moreover, according to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the drought tolerance may be attributed to upregulated starch and sucrose metabolism-related genes in tolerant genotype. Finally, quantitative real-time PCR confirmed the reproducibility of the RNA-seq data.


Assuntos
Cyamopsis , Secas , Antioxidantes/metabolismo , Cyamopsis/genética , Cyamopsis/metabolismo , Mecanismos de Defesa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Reprodutibilidade dos Testes , Estresse Fisiológico/genética , Transcriptoma
4.
Funct Integr Genomics ; 22(2): 153-170, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34988675

RESUMO

Drought, a major abiotic limiting factor, could be modulated with in-built reprogramming of plants at molecular level by regulating the activity of plant developmental processes, stress endurance and adaptation. The transgenic Arabidopsis thaliana over-expressing metallothionein 1 (MT1) gene of desi chickpea (Cicer arietinum L.) was subjected to transcriptome analysis. We evaluated drought tolerance of 7 days old plants of Arabidopsis thaliana in both wild-type (WT) as well as transgenic plants and performed transcriptome analysis. Our analysis revealed 24,737 transcripts representing 24,594 genes out of which 5,816 were differentially expressed genes (DEGs) under drought conditions and 841 genes were common in both genotypes. A total of 1251 DEGs in WT and 2099 in MT1 were identified in comparison with control. Out of the significant DEGs, 432 and 944 were upregulated, whereas 819 and 1155 were downregulated in WT and MT1 plants, respectively. The physiological and molecular parameters involving germination assay, root length measurements under different stress treatments and quantitative expression analysis of transgenic plants in comparison to wild-type were found to be enhanced. CarMT1 plants also demonstrated modulation of various other stress-responsive genes that reprogrammed themselves for stress adaptation. Amongst various drought-responsive genes, 24 DEGs showed similar quantitative expression as obtained through RNA sequencing data. Hence, these modulatory genes could be used as a genetic tool for understanding and delineating the mechanisms for fine-tuning of stress responses in crop plants.


Assuntos
Arabidopsis , Cicer , Arabidopsis/genética , Arabidopsis/metabolismo , Cicer/genética , Cicer/metabolismo , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metalotioneína/genética , Metalotioneína/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Physiol Mol Biol Plants ; 28(1): 31-49, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35221570

RESUMO

MicroRNAs (miRNAs) are small, highly conserved non-coding RNA molecules and products of primary miRNAs that regulate the target gene expression. Homology-based approaches were employed to identify miRNAs and their targets in Cestrum nocturnum L. and Cestrum diurnum L. A total of 32 and 12 miRNA candidates were identified in C. nocturnum and C. diurnum. These miRNAs belong to 26 and 10 miRNA families and regulate 1024 and 1007 target genes in C. nocturnum, and C. diurnum, respectively. The functional roles of these miRNAs have not been earlier elucidated in Cestrum. MiR815a, miR849, miR1089 and miR172 have a strong propensity to target genes controlling phytochrome-interacting factor 1 (PIF1), ubiquitin-specific protease 12 (UBP12), leucine-rich repeat (LRR) protein kinase and GAI, RGA, SCR (GRAS) family transcription factor in C. nocturnum. While miR5205a, miR1436 and miR530 regulate PATATIN-like protein 6 (PLP6), PHD finger transcription factor and myb domain protein 48 (MYB48) in C. diurnum. Overall, these miRNAs have regulatory responses in biotic and abiotic stresses in both plant species. Eight putative miRNAs and their target genes were selected for qRT-PCR validation. The validated results suggested the importance of miR815a, miR849, miR5205a, miR1089, miR172, miR1436, and miR530 in exerting control over stress responses in C. nocturnum and C. diurnum. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-022-01127-1.

6.
J Basic Microbiol ; 61(1): 37-44, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33006156

RESUMO

The endemic spread of plastic in the environment requires urgent need of a sustainable approach. Marine microbes found to have vast bioactivity and play a central role in biogeochemical cycling in the ocean; however, very few of them had been explored for biochemical cycling or plastic degradation. In the present study, we report the draft genome sequence of marine Bacillus sp. AIIW2 which was found to utilize plastic as a carbon source. The Bacillus sonorensis SRCM101395 was used as a reference genome for mapping the reads. The genome size of strain AIIW2 was approximately 4.4 Mb and composed of 4737 coding sequences with 45.7% G + C contents. The whole genome comparison of strain AIIW2 with three closest Bacillus strains showed strain specificity, the 16S ribosomal RNA sequence shows 99.93% similarity with Bacillus paralicheniformis KJ-16T (KY694465). This genome data would provide the genetic basis in developing plastic bioremediation approaches and discover the enzymes pertinent in the biodegradation processes.


Assuntos
Bacillus/genética , Genoma Bacteriano/genética , Plásticos/metabolismo , Bacillus/classificação , Bacillus/isolamento & purificação , Bacillus/metabolismo , Biodegradação Ambiental , DNA Bacteriano/genética , Genes Bacterianos/genética , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
7.
Physiol Mol Biol Plants ; 27(8): 1747-1764, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34539114

RESUMO

The basic helix-loop-helix (bHLH) is the second-largest TF family in plants that play important roles in plant growth, development, and stress responses. In this study, a total of 100 bHLHs were identified using Hidden Markov Model profiles in the Nicotiana tabacum genome, clustered into 15 major groups (I-XV) based on their conserved domains and phylogenetic relationships. Group VIII genes were found to be the most abundant, with 27 NtbHLH members. The expansion of NtbHLHs in the genome was due to segmental and tandem duplication. The purifying selection was found to have an important role in the evolution of NtHLHs. Subsequent qRT-PCR validation of five selected genes from transcriptome data revealed that NtbHLH3.1, NtbHLH3.2, NtbHLH24, NtbHLH50, and NtbHLH59.2 have higher expressions at 12 and 24 h in comparison to 0 h (control) of chilling stress. The validated results demonstrated that NtbHLH3.2 and NtbHLH24 genes have 3 and fivefold higher expression at 12 h and 2 and threefold higher expression at 24 h than control plant, shows high sensitivity towards chilling stress. Moreover, the co-expression of positively correlated genes of NtbHLH3.2 and NtbHLH24 confirmed their functional significance in chilling stress response. Therefore, suggesting the importance of NtbHLH3.2 and NtbHLH24 genes in exerting control over the chilling stress responses in tobacco. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01042-x.

8.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38586061

RESUMO

During B cell development, cells progress through multiple developmental stages with the pro-B cell stage defining commitment to the B cell lineage. YY1 is a ubiquitous transcription factor that is capable of both activation and repression functions. We find here that knockout of YY1 at the pro-B cell stage eliminates B lineage commitment. YY1 knockout pro-B cells can generate T lineage cells in vitro using the OP9- DL4 feeder system, as well as in vivo after injection into sub-lethally irradiated Rag1 -/- mice. These T lineage-like cells lose their B lineage transcript profile and gain a T cell lineage profile. Single cell-RNA-seq experiments showed that as YY1 knockout pro-B cells transition into T lineage cells, various cell clusters adopt transcript profiles representing a multiplicity of hematopoietic lineages indicating unusual lineage plasticity. Given the ubiquitous nature of YY1 and its dual activation and repression functions, YY1 likely regulates commitment in multiple cell lineages.

9.
Parasitology ; 140(4): 435-44, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23253783

RESUMO

The role of Mycobacterium w (Mw) vaccine as an immunomodulator and immunoprophylactant in the treatment of mycobacterial diseases (leprosy and pulmonary tuberculosis) is well established. The fact that it shares common antigens with leishmanial parasites prompted its assessment as an immunostimulant and as an adjunct to known anti-leishmanials that may help in stimulating the suppressed immune status of Leishmania donovani-infected individuals. The efficacy of Mw vaccine was assessed as an immunomodulator, prophylactically either alone or in combination with anti-leishmanial vaccine, as well as therapeutically as an adjunct to anti-leishmanial treatment in L. donovani-infected hamsters, representing a chronic human Visceral Leishmaniasis (VL) model. Similarly, its efficacy was also evaluated in L. donovani-infected BALB/c mice, representing an acute VL model. The preliminary studies revealed that Mw was ineffective as an immunostimulant and/or immunoprophylactant in hamsters infected with L. donovani, as estimated by T-cell immunological responses. However, in the BALB/c mice-VL model it appeared as an effective immunostimulant but a futile prophylactic agent. It is therefore inferred that, contrary to its role in managing tuberculosis and leprosy infections, Mw vaccine has not been successful in controlling VL infection, emphasizing the need to find detailed explanations for the failure of this vaccine against the disease.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Bacterianas/farmacologia , Imunomodulação/efeitos dos fármacos , Leishmaniose Visceral/prevenção & controle , Animais , Vacinas Bacterianas/imunologia , Proliferação de Células/efeitos dos fármacos , Cricetinae , Leishmania donovani , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos
10.
Sci Rep ; 13(1): 4918, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966146

RESUMO

Phosphate starvation is one of the major factors limiting plant productivity globally. Soil microflora with an inherent trait of phosphate accumulation directly influences soil phosphorus level by regulating its labile form in soil solution. However, the detailed mechanism involved during their interaction with plants under phosphate deficient conditions is still unexplored. Hence, to dissect these complex gene regulatory networks, transcriptome analysis of A. thaliana roots grown under phosphate starved conditions in presence of phosphate accumulating bacteria (Pseudomonas putida; RAR) was performed. Plants grown under phosphate starved conditions showed upregulation of phosphate starvation responsive genes associated with cell biogenesis, stress, photosynthesis, senescence, and cellular transport. Inoculation of RAR upregulated genes linked to defense, cell wall remodeling, and hormone metabolism in stressed plants. Gene ontology analysis indicated the induction of S-glycoside, glucosinolate, and glycosinolate metabolic processes in RAR inoculated plants under phosphate stressed conditions. Further, protein-protein interaction analysis revealed upregulation of root development, cation transport, anion transport, sulfur compound metabolic process, secondary metabolic process, cellular amino metabolic process, and response to salicylic acid in RAR inoculated plants under phosphate starved conditions. These results indicate the potential role of phosphate accumulating bacteria in alleviating phosphate starvation in plants by involving multiple pathways.


Assuntos
Arabidopsis , Pseudomonas putida , Arabidopsis/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Perfilação da Expressão Gênica , Solo , Regulação da Expressão Gênica de Plantas
11.
Front Plant Sci ; 14: 1109031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860898

RESUMO

Histone deacetylase 2 (HD2) proteins play an important role in the regulation of gene expression. This helps with the growth and development of plants and also plays a crucial role in responses to biotic and abiotic stress es. HD2s comprise a C2H2-type Zn2+ finger at their C-terminal and an HD2 label, deacetylation and phosphorylation sites, and NLS motifs at their N-terminal. In this study, a total of 27 HD2 members were identified, using Hidden Markov model profiles, in two diploid cotton genomes (Gossypium raimondii and Gossypium arboretum) and two tetraploid cotton genomes (Gossypium hirsutum and Gossypium barbadense). These cotton HD2 members were classified into 10 major phylogenetic groups (I-X), of which group III was found to be the largest with 13 cotton HD2 members. An evolutionary investigation showed that the expansion of HD2 members primarily occurred as a result of segmental duplication in paralogous gene pairs. Further qRT-PCR validation of nine putative genes using RNA-Seq data suggested that GhHDT3D.2 exhibits significantly higher levels of expression at 12h, 24h, 48h, and 72h of exposure to both drought and salt stress conditions compared to a control measure at 0h. Furthermore, gene ontology, pathways, and co-expression network study of GhHDT3D.2 gene affirmed their significance in drought and salt stress responses.

12.
Front Psychiatry ; 13: 812075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711579

RESUMO

Background: Adults with substance use disorders (SUDs) often have co-occurring mental health problems. Emotion regulation may play a vital role in mental health problems. The Cognitive Emotion Regulation Questionnaire (CERQ) is a widely used measure for assessing cognitive emotion regulation. However, it has not been used in Pakistan on patients with co-occurring SUDs and mental health issues. The present study aims to translate and adapt the CERQ into the Urdu language and to determine its reliability and convergent validity in a sample of male patients with SUDs in Pakistan. Method: Participants completed a demographic information form, the CERQ, the Depression, Anxiety, and Stress Scale Short Form [DASS-21)], and the Rosenberg Self-Esteem Scale [RSES)] in Urdu. Results: Male participants (N = 237) 18-50 years of age (M = 29.8, SD = 8.1) were recruited from four substance use disorder treatment centers and hospitals in Karachi. The reliability of the Urdu version of the CERQ was based on an examination of its internal consistency reliability (Cronbach's α) and test-retest reliability for both the total scale and its subscales. Internal consistency for the CERQ total (α = 0.80) was adequate, as it was for subscales of self-blame, (0.76) acceptance (0.78), rumination (0.72), positive refocusing (0.79), focus on planning (0.89), positive reappraisal (0.81), putting into perspective (0.83), catastrophizing (0.73), and other blame (0.70). The 10-14 day test-retest reliability of the CERQ total score was 0.86. Higher CERQ scores were significantly (ps < 0.001) negatively associated with DASS-21depression (r = -0.24), anxiety (r = -0.23), and stress (r = -0.27) subscales, as well as the DASS-21 total score (r = -0.26) and positively associated with the RSES self-esteem score (r = 0.30). Conclusion: The Urdu version of the CERQ is a reliable measure for investigating cognitive emotion regulation strategies related to mental health and SUDs in Pakistan.

13.
Front Plant Sci ; 13: 818472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548277

RESUMO

Abiotic stress tolerance is an intricate feature controlled through several genes and networks in the plant system. In abiotic stress, salt, and drought are well known to limit cotton productivity. Transcriptomics meta-analysis has arisen as a robust method to unravel the stress-responsive molecular network in crops. In order to understand drought and salt stress tolerance mechanisms, a meta-analysis of transcriptome studies is crucial. To confront these issues, here, we have given details of genes and networks associated with significant differential expression in response to salt and drought stress. The key regulatory hub genes of drought and salt stress conditions have notable associations with functional drought and salt stress-responsive (DSSR) genes. In the network study, nodulation signaling pathways 2 (NSP2), Dehydration-responsive element1 D (DRE1D), ethylene response factor (ERF61), cycling DOF factor 1 (CDF1), and tubby like protein 3 (TLP3) genes in drought and tubby like protein 1 (TLP1), thaumatin-like proteins (TLP), ethylene-responsive transcription factor ERF109 (EF109), ETS-Related transcription Factor (ELF4), and Arabidopsis thaliana homeodomain leucine-zipper gene (ATHB7) genes in salt showed the significant putative functions and pathways related to providing tolerance against drought and salt stress conditions along with the significant expression values. These outcomes provide potential candidate genes for further in-depth functional studies in cotton, which could be useful for the selection of an improved genotype of Gossypium hirsutum against drought and salt stress conditions.

14.
Front Psychol ; 13: 852121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747680

RESUMO

The novel coronavirus (COVID-19) is an infectious disease that spread across the world, bringing with it serious mental health problems for men and women. Women in Pakistan are infected with COVID-19 at a much lower rate than men, yet report worse mental health. To explain this paradox, we surveyed 190 participants (46% male) shortly following the country lockdown, focusing on perceptions of the COVID-19 impact and positive adjustment. Measures used in this study included the Warwick-Edinburgh Mental Well-being Scale and Distress Tolerance Scale. Factor analysis revealed five distinct areas related to COVID-19, which did not differ by sex. However, men reported higher levels of both distress tolerance and well-being than women. High endorsement of actions to protect against COVID-19 was related to lower distress tolerance scores, but in different ways for men and women. Men, but not women, who endorsed more protective measures to stop the pandemic reported higher DTS absorption scores, and therefore being more consumed by distress; women who endorsed more protective measures to stop the pandemic reported less acceptance of distress than men, as reflected in DTS appraisal scores. An in-depth analysis of women's beliefs and behaviors related to COVID-19 is warranted to understand why Pakistani women who are infected with COVID-19 at lower rates than men show more mental health symptoms.

15.
Microbiol Spectr ; 10(5): e0118622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36066253

RESUMO

Propiconazole (PCZ) is a commonly sprayed fungicide against fungal pathogens. Being systemic in action, it reaches subcellular layers and impacts the endophytes. Although PCZ is a fungicide, it is hypothesized to exert an inhibitory effect on the bacterial endophytes. Therefore, this study aims to get an insight into the perturbations caused by the systemically acting antifungal agents PCZ and Bacillus subtilis (W9) and the consequences thereof. The current study compared the 16S rRNA microbial diversity, abundance, and functions of the endophytic bacterial community of tomato in response to PCZ, W9, and PCZ+W9 application. The implications of these treatments on the development of bacterial speck disease by Pseudomonas syringae were also studied. The culturable endophyte population fluctuated after (bio)fungicide application and stabilized by 72 h. At 72 h, the endophyte population was ~3.6 × 103 CFUg-1 in control and ~3.6 × 104 in W9, ~3.0 × 102 in PCZ, and ~5.3 × 103 in PCZ+W9 treatment. A bacterial community analysis showed a higher relative abundance of Bacillales, Burkholderiales, Rhizobiales, Pseudomonadales, and Actinomycetales in the W9 treatment compared with that in the PCZ treatment and control. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis showed enhanced metabolic pathways related to secretion, stress, chemotaxis, and mineral nutrition in the W9 treatment. Disease severity was greater in PCZ than that in the W9 treatment. Disease severity on tomato plants showed strong negative correlations with Sphingomonas (r = -0.860) and Janthinobacterium (r = -0.810), indicating that the natural biocontrol communities are agents of plant resistance to diseases. Outcomes show that systemic chemicals are a potential threat to the nontarget endophytes and that plants became susceptible to disease on endophyte decline; this issue could be overcome by the application of microbial inoculums. IMPORTANCE Endophytes are plant inhabitants acting as its extended genome. The present study highlights the importance of maintaining plant endophytes for sustainable disease resistance in plants. The impact of chemical fungicides and biofungicides was shown on tomato endophytes, in addition to their implications on plant susceptibility to bacterial speck disease. The observations point toward the deleterious effects of systemic pesticide application on endophyte niches that disrupt their diversity and functions compromising plant immunity.


Assuntos
Fungicidas Industriais , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Bacillus subtilis/genética , RNA Ribossômico 16S/genética , Filogenia , Antifúngicos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Endófitos/genética , Endófitos/metabolismo , Plantas/microbiologia
16.
Front Plant Sci ; 12: 667929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367198

RESUMO

Tubby-like proteins (TLPs) possess a highly conserved closed ß barrel tubby domain at C-terminal and N-terminal F-box. The role of TLP gene family members has been widely discussed in numerous organisms; however, the detailed genome-wide study of this gene family in Gossypium species has not been reported till date. Here, we systematically identified 105 TLP gene family members in cotton (Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense) genomes and classified them into eight phylogenetic groups. Cotton TLP12 gene family members clustered into two groups, 4 and 8. They experienced higher evolutionary pressure in comparison to others, indicating the faster evolution in both diploid as well as in tetraploid cotton. Cotton TLP gene family members expanded mainly due to segmental duplication, while only one pair of tandem duplication was found in cotton TLPs paralogous gene pairs. Subsequent qRT-PCR validation of seven putative key candidate genes of GhTLPs indicated that GhTLP11A and GhTLP12A.1 genes were highly sensitive to salt and drought stress. The co-expression network, pathways, and cis-regulatory elements of GhTLP11A and GhTLP12A.1 genes confirmed their functional importance in salt and drought stress responses. This study proposes the significance of GhTLP11A and GhTLP12A.1 genes in exerting control over salt and drought stress responses in G. hirsutum and also provides a reference for future research, elaborating the biological roles of G. hirsutum TLPs in both stress responses.

17.
Front Microbiol ; 12: 751571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646260

RESUMO

Polyethylene terephthalate (PET) is a common single-use plastic that accumulated in the environment because of its non-degradable characteristics. In recent years, microbes from different environments were found to degrade plastics and suggested their capability to degrade plastics under varying environmental conditions. However, complete degradation of plastics is still a void for large-scale implications using microbes because of the lack of knowledge about genes and pathways intricate in the biodegradation process. In the present study, the growth and adherence of marine Bacillus species AIIW2 on PET surface instigating structural deterioration were confirmed through weight loss and hydrophobicity reduction, as well as analyzing the change in bond indexes. The genome-wide comparative transcriptomic analysis of strain AIIW2 was completed to reveal the genes during PET utilization. The expression level of mRNA in the strain AIIW2 was indexed based on the log-fold change between the presence and absence of PET in the culture medium. The genes represent carbon metabolism, and the cell transport system was up-regulated in cells growing with PET, whereas sporulation genes expressed highly in the absence of PET. This indicates that the strain AIIW2 hydrolyzes PET and assimilated via cellular carbon metabolism. A protein-protein interaction network was built to obtain the interaction between genes during PET utilization. The genes traced to degrade PET were confirmed by detecting the hydrolytic product of PET, and genes were cloned to improve PET utilization by microbial system as an eco-friendly solution.

18.
EJIFCC ; 32(4): 442-450, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35046762

RESUMO

INTRODUCTION: Intact Parathyroid Hormone (iPTH) has a short half-life i.e. two to four minutes therefore the sampling regimen has to pass through a stringent pre-analytical process control. The aim of this study was to identify the causes of apparently falsely low iPTH encountered while signing out Laboratory reports by the Clinical Chemistry professionals. MATERIAL AND METHODS: This report was conducted at the section of Clinical Chemistry, The Aga Khan University Hospital (AKUH) Karachi Pakistan from July to December 2017. Audit tool utilized was Plan-Do-Check-Act Cycle. After correlating with available clinical details and lab parameters, all low iPTH values (<16 pg/ml) were investigated by phone interview. A fresh sample was requested for non-correlating cases.Appropriate interventions were undertaken and a re-assessment was done from January to March 2018. RESULTS: During the audit, 2559 iPTH samples were analyzed. 110 (4.3%) were identified as apparently falsely low. After recollection, the above 110 samples were immediately centrifuged, and cold chain maintained until re-analysis. 60 (2.4%) resulted with normal or elevated levels. The causes identified were poor compliance of staff with pre-analytical steps including delayed sample separation and unfavorable temperature chain maintenance. Interventions included online meetings with the staff country-wide and circulation of flyers detailing the pre-analytical steps via emails and hard copies. Re-audit showed reduction in number of apparently falsely low results to 30 out of a total of 1448 samples and 14 (0.96%) were investigated to be falsely low. CONCLUSION: Stringent pre-analytical process control is vital for quality reporting and patient safety.

19.
Front Cell Infect Microbiol ; 11: 648903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842396

RESUMO

As India moves toward the elimination of visceral leishmaniasis (VL) as a public health problem, comprehensive timely case detection has become increasingly important, in order to reduce the period of infectivity and control outbreaks. During the 2000s, localized research studies suggested that a large percentage of VL cases were never reported in government data. However, assessments conducted from 2013 to 2015 indicated that 85% or more of confirmed cases were eventually captured and reported in surveillance data, albeit with significant delays before diagnosis. Based on methods developed during these assessments, the CARE India team evolved new strategies for active case detection (ACD), applicable at large scale while being sufficiently effective in reducing time to diagnosis. Active case searches are triggered by the report of a confirmed VL case, and comprise two major search mechanisms: 1) case identification based on the index case's knowledge of other known VL cases and searches in nearby houses (snowballing); and 2) sustained contact over time with a range of private providers, both formal and informal. Simultaneously, house-to-house searches were conducted in 142 villages of 47 blocks during this period. We analyzed data from 5030 VL patients reported in Bihar from January 2018 through July 2019. Of these 3033 were detected passively and 1997 via ACD (15 (0.8%) via house-to-house and 1982 (99.2%) by light touch ACD methods). We constructed multinomial logistic regression models comparing time intervals to diagnosis (30-59, 60-89 and ≥90 days with <30 days as the referent). ACD and younger age were associated with shorter time to diagnosis, while male sex and HIV infection were associated with longer illness durations. The advantage of ACD over PCD was more marked for longer illness durations: the adjusted odds ratios for having illness durations of 30-59, 60-89 and >=90 days compared to the referent of <30 days for ACD vs PCD were 0.88, 0.56 and 0.42 respectively. These ACD strategies not only reduce time to diagnosis, and thus risk of transmission, but also ensure that there is a double check on the proportion of cases actually getting captured. Such a process can supplement passive case detection efforts that must go on, possibly perpetually, even after elimination as a public health problem is achieved.


Assuntos
Infecções por HIV , Leishmaniose Visceral , Humanos , Índia , Masculino
20.
Environ Microbiol ; 11(9): 2434-45, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19601959

RESUMO

We compared abundance, distributions and phylogenetic composition of Crenarchaeota and ammonia-oxidizing Archaea (AOA) in samples collected from coastal waters west of the Antarctic Peninsula during the summers of 2005 and 2006, with samples from the central Arctic Ocean collected during the summer of 1997. Ammonia-oxidizing Archaea and Crenarchaeota abundances were estimated from quantitative PCR measurements of amoA and 16S rRNA gene abundances. Crenarchaeota and AOA were approximately fivefold more abundant at comparable depths in the Antarctic versus the Arctic Ocean. Crenarchaeota and AOA were essentially absent from the Antarctic Summer Surface Water (SSW) water mass (0-45 m depth). The ratio of Crenarchaeota 16S rRNA to archaeal amoA gene abundance in the Winter Water (WW) water mass (45-105 m depth) of the Southern Ocean was much lower (0.15) than expected and in sharp contrast to the ratio (2.0) in the Circumpolar Deep Water (CDW) water mass (105-3500 m depth) immediately below it. We did not observe comparable segregation of this ratio by depth or water mass in Arctic Ocean samples. A ubiquitous, abundant and polar-specific crenarchaeote was the dominant ribotype in the WW and important in the upper halocline of the Arctic Ocean. Our data suggest that this organism does not contain an ammonia monooxygenase gene. In contrast to other studies where Crenarchaeota populations apparently lacking amoA genes are found in bathypelagic waters, this organism appears to dominate in well-defined, ammonium-rich, near-surface water masses in polar oceans.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Água do Mar/microbiologia , Regiões Antárticas , Archaea/genética , Regiões Árticas , Sequência de Bases , Genes Arqueais , Dados de Sequência Molecular , Oceanos e Mares , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/análise , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA