RESUMO
The anti-proliferative activity of the known metalloantibiotic {[Ag(CIPH)2]NO3â0.75MeOHâ1.2H2O} (CIPAG) (CIPH = ciprofloxacin) against the human breast adenocarcinoma cancer cells MCF-7 (hormone dependent (HD)) and MDA-MB-231 (hormone independent (HI)) is evaluated. The in vitro toxicity and genotoxicity of the metalloantibiotic were estimated toward fetal lung fibroblast (MRC-5) cells. The molecular mechanism of the CIPAG activity against MCF-7 cells was clarified by the (i) cell morphology, (ii) cell cycle arrest, (iii) mitochondrial membrane permeabilization, and (iv) by the assessment of the possible differential effect of CIPAG on estrogen receptor alpha (ERα) and estrogen receptor beta (ERß) transcriptional activation, applying luciferase reporter gene assay. Moreover, the ex vivo mechanism of CIPAG was clarified by its binding affinity toward calf thymus (CT-DNA).
Assuntos
Antineoplásicos , Neoplasias da Mama , Ciprofloxacina , Humanos , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Feminino , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Prata/química , Prata/farmacologia , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , DNA/metabolismo , DNA/química , Ensaios de Seleção de Medicamentos Antitumorais , Animais , Células MCF-7 , Linhagem Celular TumoralRESUMO
The antiproliferative and antibacterial activities of thiosemicarbazones increase markedly with the presence of metal ions. One of the factors determining the activity of metal thiosemicarbazone complexes is the coordination structure. In this study, the biological effects of new antimony (III) and bismuth (III) thiosemicarbazone complexes with different binding modes and geometrical structures were demonstrated. Three new complexes, with the formulae {[SbCl3(µ2-S-Hacptsc)(η1-S-Hacptsc)], 2/3H2O,1/3CH2Cl2}, {[SbCl3(κ2-S,N-Hacpmtsc)(η1-S-Hacpmtsc)2CH2Cl2]}, and{[BiCl3(η1-S-Hbzmtsc)3]·C2H5OH}, where Hacptsc: acetophenone thiosemicarbazone, Hacpmtsc: acetophenone-N-methyl thiosemicarbazone, Hbzmtsc: benzaldehyde-N-methyl thiosemicarbazone) were elucidated by different methods and deeply analyzed in accordance with their structure by X-ray structure analysis and Atoms-In-Molecules topological analysis. This analysis provided a deeper understanding of the coordination spheres of the Sb/Bi complexes. For instance, the first reported two binding modes of the same ligand are observed in a single crystal structure of antimony (III) halide complexes. Additionally, in one of the complexes, a solid-to-solid phase transition was detected and analyzed in detail. Those complexes, very unique in terms of their geometry, have also been tested for their in vitro cytotoxic activity against human adenocarcinoma cervical cancer (HeLa) cells, whereas antimony (III) complex 1is the most active complex of this study. Further, the antibacterial activity of the complexes has been screened against two Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and two Gram-positive (Staphylococcus epidermidis and Staphylococcus aureus) pathogenic bacteria. From the results, it is found that all the complexes exhibited significant activity against the Gram-negative pathogenic bacteria.
Assuntos
Antibacterianos , Antimônio , Complexos de Coordenação , Testes de Sensibilidade Microbiana , Tiossemicarbazonas , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , Antimônio/química , Antimônio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Bismuto/química , Bismuto/farmacologia , Cristalografia por Raios X , Modelos MolecularesRESUMO
The antiproliferative activity of three antibiotics clinically use, was studied through DNA inhibition mechanisms, ex vivo, in silico and in vitro. The ex vivo interaction of DNA with ciprofloxacin hydrochloride (CIP·HCl), penicillin G sodium salt (PEN·Na), and tetracycline hydrochloride (TC·HCl) was determined by UV-Vis spectra and viscosity measurements. Furthermore, their binding constants (Kb) toward CT-DNA were calculated (Kb = (2.8 ± 0.6) × 104 (CIP·HCl), (0.4 ± 0.1) × 104 (PEN·Na) and (6.9 ± 0.3) × 104 (TC·HCl) Μ-1). Docking studies on the binding interactions of antibiotics with DNA were performed to rationalize the ex vivo results. The in vitro antiproliferative activity of the antibiotics was evaluated against human breast adenocarcinoma (MCF-7) cells (IC50 values: 417.4 ± 28.2 (CIP·HCl), >2000 (PEN·Na) and 443.1 ± 17.2 (TC·HCl) µΜ). Cell cycle arrest studies confirmed the apoptotic type of MCF-7 cells. The toxicity of the studied agents was in vitro tested against human fetal lung fibroblast cells (MRC-5). The results are compared with the corresponding one for doxorubicin (DOX). Despite their low binding affinity to DNA (Kb) or their different mode of interaction, TC·HCl (anthracycline) or CIP·HCl (quinolones), exhibit notable antiproliferative activity and low toxicity.
Assuntos
Antibacterianos , Antineoplásicos , Humanos , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Células MCF-7 , Doxorrubicina/farmacologia , DNA/química , Ciprofloxacina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular , Proliferação de CélulasRESUMO
The low water solubility of aspirin (ASPH) is well known, creating research challenges regarding both its composition and its delivery. Therefore, the development of new aspirin-based formulations that are water soluble is a research, technological, and financial issue. With the aim to improve the water solubility of ASPH, the micelle of formula SLS@ASPH (SLS = Sodium Lauryl Sulfate) was formed. The Critical Micelle Concentration (CMC) of SLS in the presence of ASPH was determined by ultrasonic velocity, complementary, and transient birefringence measurements. The SLS@ASPH was characterized by the melting point (m.p.), attenuated total reflection spectroscopy (FT-IR-ATR), and X-ray fluorescence spectroscopy (XRF) in a solid state and in a solution by ultraviolet-visible (UV-Vis) and 1H NMR spectroscopies. The SLS/ASPH molar ratio was determined to be 5/1 in SLS@ASPH. The inhibitory activity of SLS@ASPH towards lipoxygenase (LOX), an enzyme that takes part in the inflammation mechanism, was studied. The inhibitory activity of SLS@ASPH against LOX is 3.5-fold stronger than that of free SLS. The in vitro toxicity of the SLS@ASPH was tested on immortalized human keratinocyte (HaCaT) cells.
Assuntos
Micelas , Tensoativos , Humanos , Tensoativos/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Dodecilsulfato de Sódio/química , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina , Água/químicaRESUMO
The pollution of aquatic ecosystems due to the elevated concentration of a variety of contaminants, such as metal ions, poses a threat to humankind, as these ecosystems are in high relevance with human activities and survivability. The exposure in heavy metal ions is responsible for many severe chronic and pathogenic diseases and some types of cancer as well. Metal ions of the groups 11 (Cu, Ag, Au), 12 (Zn, Cd, Hg), 14 (Sn, Pb) and 15 (Sb, Bi) highly interfere with proteins leading to DNA damage and oxidative stress. While, the detection of these contaminants is mainly based on physicochemical analysis, the chemical determination, however, is deemed ineffective in some cases because of their complex nature. The development of biological models for the evaluation of the presence of metal ions is an attractive solution, which provides more insights regarding their effects. The present work critically reviews the reports published regarding the toxicity assessment of heavy metal ions through Allium cepa and Artemia salina assays. The in vivo toxicity of the agents is not only dose depended, but it is also strongly affected by their ligand type. However, there is no comprehensive study which compares the biological effect of chemical agents against Allium cepa and Artemia salina. Reports that include metal ions and complexes interaction with either Allium cepa or Artemia salina bio-indicators are included in the review.
Assuntos
Mercúrio , Metais Pesados , Animais , Artemia/metabolismo , Cádmio/metabolismo , Química Bioinorgânica , Ecossistema , Humanos , Íons/metabolismo , Chumbo , Ligantes , Mercúrio/farmacologia , Metais Pesados/metabolismo , Metais Pesados/toxicidade , CebolasRESUMO
The organoantimony derivative of formula trans-O,O-[Ph3SbV(Carv)2] (TPAC) (CarvH = carvacrol) is obtained by the oxidation of triphenylstibine (Ph3SbIII) with hydrogen peroxide in the presence of carvacrol (CarvH). Physical methods such as X-ray Fluorescence (XRF) spectroscopy, single crystal and powder X-ray diffraction analysis (XRD and PXRD), Attenuated Total Reflection Fourier Transform Infra-red (ATR-FTIR) spectroscopy, Thermogravimetric Differential Thermal Analysis (TG-DTA) and Differential Scanning Calorimetry (DTG/DSC), confirm the retention of the formula of TPAC throughout the sample mass in solid state, while UV-Vis spectroscopy in the solution. TPAC is the first example of carvacrol (the main ingredient of oregano) covalently bonded to any metal ion. Only the trans-O,O-[Ph3Sb(Carv)2] isomer was isolated suggesting stereo-selectivity of the preparation route. TPAC inhibits in vitro both human breast adenocarcinoma cell lines: MCF-7 (positive to hormones receptor (HR +)), MDA-MB-231 (negative to hormones receptor (HR-)) stronger than normal human fetal lung fibroblast cells (MRC-5). The MCF-7 cells morphology, DNA fragmentation, Acridine Orange/Ethidium Bromide (AO/EB) Staining, cell cycle arrest and mitochondrial membrane permeabilization tests suggest an apoptotic pathway for cell death, especially, through the mitochondrion damage. The binding type of TPAC toward the calf thymus CT-DNA was initially deduced ex vivo from the differentiation of the DNA solution viscosity. Fluorescence spectroscopy confirms the interaction mode suggested. Spectroscopic evidence (FTIR, UV-Vis) suggest that glutathione (GSH) (a tripeptide over-expressed in tumor cells) induces conversion of non-active pentavalent antimony, which is contained in TPAC, to active trivalent one, providing a new strategy for the development of targeted chemotherapeutics.
Assuntos
Neoplasias da Mama , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Cimenos , DNA , Feminino , Hormônios , Humanos , Células MCF-7RESUMO
This Special Issue of the International Journal of Molecular Sciences, entitled "Antimicrobial Materials with Medical Applications", covers a selection of recent research and review articles in the field of antimicrobial materials, as well as their medical applications [...].
Assuntos
Anti-Infecciosos/farmacologia , Desinfetantes/farmacologia , Contaminação de Equipamentos/prevenção & controle , Desenvolvimento de Medicamentos , Resistência Microbiana a Medicamentos , Humanos , Embalagem de ProdutosRESUMO
The oregano leaves' extract (ORLE) was used for the formation of silver nanoparticles (AgNPs(ORLE)). ORLE and AgNPs(ORLE) (2 mg/mL) were dispersed in polymer hydrogels to give the pHEMA@ORLE_2 and pHEMA@AgNPs(ORLE)_2 using hydroxyethyl-methacrylate (HEMA). The materials were characterized by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), derivative thermogravimetry/differential scanning calorimetry (DTG/DSC), ultraviolet (UV-Vis), and attenuated total reflection mode (ATR-FTIR) spectroscopies in solid state and UV-Vis in solution. The crystallite size value, analyzed with XRPD, was determined at 20 nm. The antimicrobial activity of the materials was investigated against Gram-negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). The Gram-positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) are known to be involved in microbial keratitis by the means of inhibitory zone (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The IZs, which developed upon incubation of P. aeruginosa, E. coli, S. epidermidis, and S. aureus with paper discs soaked in 2 mg/mL of AgNPs(ORLE), were 11.7 ± 0.7, 13.5 ± 1.9, 12.7 ± 1.7, and 14.3 ± 1.7 mm. When the same dose of ORLE was administrated, the IZs were 10.2 ± 0.7, 9.2 ± 0.5, 9.0 ± 0.0, and 9.0 ± 0.0 mm. The percent of bacterial viability when they were incubated over the polymeric hydrogel discs of pHEMA@AgNPs(ORLE)_2 was interestingly low (66.5, 88.3, 77.7, and 59.6%, respectively, against of P. aeruginosa, E. coli, S. epidermidis, and S. aureus) and those of pHEMA@ORLE_2 were 89.3, 88.1, 92.8, and 84.6%, respectively. Consequently, pHEMA@AgNPs(ORLE)_2 could be an efficient candidate toward the development of non-infectious contact lenses.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Lentes de Contato/microbiologia , Nanopartículas Metálicas/química , Origanum/química , Animais , Artemia/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Humanos , Hidrogéis/química , Testes de Sensibilidade Microbiana/métodos , Extratos Vegetais/química , Folhas de Planta/química , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/química , Espectrometria por Raios X , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Termogravimetria , Difração de Raios XRESUMO
Eucalyptus leaves (ELE) and willow bark (WBE) extracts were utilized towards the formation of silver nanoparticles (AgNPs(ELE), AgNPs(WBE)). AgNPs(ELE) and AgNPs(WBE) were dispersed in polymer hydrogels to create pHEMA@AgNPs(ELE)_2 and pHEMA@AgNPs(WBE)_2 using hydroxyethyl-methacrylate (HEMA). The materials were characterized in a solid state by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), differential scanning calorimetry (DTG/DSC) and attenuated total reflection spectroscopy (ATR-FTIR) and ultraviolet visible (UV-vis) spectroscopy in solution. The antimicrobial potential of the materials was investigated against the Gram-negative bacterial strain Pseudomonas aeruginosa (P. aeruginosa) and the Gram-positive bacterial strain of the genus Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus), which are involved in microbial keratitis. The percentage of bacterial viability of P. aeruginosa and S. epidermidis upon their incubation over the pHEMA@AgNPs(ELE)_2 discs is interestingly low (28.3 and 6.8% respectively), while the inhibition zones (IZ) formed are 12.3 ± 1.7 and 13.2 ± 1.2 mm, respectively. No in vitro toxicity of this material towards human corneal epithelial cells (HCEC) was detected. Despite its low performance against S. aureus, pHEMA@AgNPs(ELE)_2 could be an efficient candidate towards the development of contact lenses that reduces microbial infection risk.
Assuntos
Lentes de Contato/microbiologia , Eucalyptus/química , Hidrogéis/química , Extratos Vegetais/química , Salix/química , Prata/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata/químicaRESUMO
Two complexes of Zn(II) and Ni(II) ions with the urea derivative, 2-benzimidazolyl-urea (BZIMU), of formulae [ZnBZIMU)2(H2O)](NO3)2 (1) and [Ni(BZIMU)2(CH3CH2OH)2](NO3)2 (2) were synthesized and characterized by their melting point, elemental analysis, spectroscopic techniques (FTIR, UV-Vis and 1H-NMR), High-resolution mass spectroscopy (HRMS), molar conductivity and thermogravimetric analysis. The crystal structures of 1-2 were determined by X-ray diffraction analysis. The antiproliferative activity of 1-2 was tested in vitro against human adenocarcinoma cell lines: cervix (HeLa) and breast (MCF-7). Their toxicity was surveyed against normal human fetal lung fibroblast cells (MRC-5). The bioactivity mechanism of 1-2 and their related analogues of copper and silver metallodrugs are rationalized by the means of computations. The antimicrobial activity of 1-2 against Escherichia coli (E. coli) is also evaluated. The complexes [ZnBZIMU)2(H2O)](NO3)2 (1) and [Ni(BZIMU)2(CH3CH2OH)2](NO3)2 (2) (BZIMU= 2-Benzimidazolyl-urea), were tested in vitro against HeLa and MCF-7 cells. Their toxicity was surveyed against normal MRC-5 cells. The association of the microbiota with the antiproliferative activity of 1-2 was investigated against Escherichia coli.
Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Níquel/química , Ureia/análogos & derivados , Ureia/química , Zinco/química , Complexos de Coordenação/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Ligação de Hidrogênio , Bicamadas Lipídicas , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Análise EspectralRESUMO
This Special Issue of the International Journal of Molecular Science comprises a comprehensive study on "Metal Complex Interactions with Nucleic Acids and/or DNA". [...].
Assuntos
DNA/química , Ácidos Nucleicos/química , Química Bioinorgânica , Cisplatino/química , Paládio/químicaRESUMO
Two known tin-based polymers of formula {[R3Sn(CH3COO)]n} where R = n-Buâ» (1) and R = Phâ» (2),were evaluated for their in vitro biological properties. The compounds were characterized via their physical properties and FT-IR, 119Sn Mössbauer, and ¹H NMR spectroscopic data. The molecular structures were confirmed by single-crystal X-Ray diffraction crystallography. The geometry around the tin(IV) ion is trigonal bi-pyramidal. Variations in Oâ»Snâ»O···Sn' torsion angles lead to zig-zag and helical supramolecular assemblies for 1 and 2, respectively. The in vitro cell viability against human breast adenocarcinoma cancer cell lines: MCF-7 positive to estrogens receptors (ERs) and MDA-MB-231 negative to ERs upon their incubation with 1 and 2 was investigated. Their toxicity has been studied against normal human fetal lung fibroblast cells (MRC-5). Compounds 1 and 2 exhibit 134 and 223-fold respectively stronger antiproliferative activity against MDA-MB-231 than cisplatin. The type of the cell death caused by 1 or 2 was also determined using flow cytometry assay. The binding affinity of 1 and 2 towards the CT-DNA was suspected from the differentiation of the viscosity which occurred in the solution containing increasing amounts of 1 and 2. Changes in fluorescent emission light of Ethidium bromide (EB) in the presence of DNA confirmed the intercalation mode of interactions into DNA of both complexes 1 and 2 which have been ascertained from viscosity measurements. The corresponding apparent binding constants (Kapp) of 1 and 2 towards CT-DNA calculated through fluorescence spectra are 4.9 × 104 (1) and 7.3 × 104 (2) M-1 respectively. Finally, the type of DNA binding interactions with 1 and 2 was confirmed by docking studies.
Assuntos
DNA/química , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Compostos Orgânicos de Estanho/química , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Humanos , Células MCF-7 , Compostos Orgânicos de Estanho/metabolismo , Compostos Orgânicos de Estanho/farmacologiaRESUMO
Novel silver(I) metallo-drugs of the nonsteroidal anti-inflammatory drug nimesulide (nim) and the mitochondriotropic triaryl derivatives of pnictogen ligands (tpE, E = P (tpp, tptp, or totp), As (tpAs), Sb (tpSb)) with the formulas {[Ag(nim) (tpp)2]DMF} (1), [Ag(nim) (tptp)2] (2), [Ag(nim) (totp)] (3), [Ag(nim) (tpAs)2] (4), and [Ag(nim) (tpSb)3] (5) ((tpp = triphenyphosphine, tptp = tri(p-tolyl)phosphine, totp = tri(o-tolyl)phosphine, tpAs = triphenylarsine, tpSb = triphenylantimony, and DMF = dimethylformamide) were synthesized and characterized by melting point, vibrational spectroscopy (mid-Fourier transform IR), (1)H NMR, UV-visible spectroscopic techniques, and X-ray crystallography. The in vitro cytotoxic activity of 1-5 against human breast adenocarcinoma cancer cell lines: MCF-7 (estrogen receptor (ER) positive) and MDA-MB-231 (ER negative) was determined. The genotoxicity on normal human fetal lung fibroblast cells (MRC-5) caused by 1-5 was evaluated by fluorescence microscopy. The absence of micronucleus in MRC-5 cells confirms the in vitro non toxicity behavior of the compounds. Because of the morphology of the cells, an apoptotic pathway was concluded for the cell death. The apoptotic pathway, especially though the mitochondrion damage, was confirmed by DNA fragmentation, cell cycle arrest, and permeabilization of the mitochondrial membrane tests. The molecular mechanism of action of 1-5 was further studied by (i) the binding affinity of 1-5 toward the calf thymus (CT) DNA, (ii) the inhibitory activity of 1-5 against lipoxygenase (an enzyme that oxidizes polyunsaturated fatty acids to leukotrienes or prostaglandins), and (iii) the catalytic activity of 1-5 on the oxidation of linoleic acid (an acid that partakes in membrane fluidity, membrane enzyme activities, etc.) to hyperoxolinoleic acid by oxygen.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Prata/química , Prata/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Humanos , Células MCF-7 , Modelos MolecularesRESUMO
This Special Issue entitled "Silver and Gold Compounds as Antibiotics" covers a selection of recent research and review articles focused on biological inorganic chemistry [...].
RESUMO
The new water-soluble di-anionic bi-sodium salt of tetracycline (TC), an antibiotic in clinical use, with the formula {[TC]2-[Na+(MeOH)(H2O)] [Na+]·(H2O)}n (TCNa) was synthesized. The compound was characterized by m.p., attenuated total reflectance-Fourier transform infra-red (ATR-FTIR) spectroscopy, and ultraviolet (UV) and proton nuclear magnetic resonance (1H NMR) spectroscopy in the solid state and in solution. The molecular weight (MW) was determined by cryoscopy. The crystal structure of TCNa was also determined by X-ray crystallography. The antibacterial activity of TCNa was evaluated against the bacterial species Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) by means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and inhibition zones (IZs). Moreover, the ability of the compound to eradicate biofilm formation was also evaluated. The results are compared with those obtained for the commercially available drug TCH2. The in vitro and in vivo toxicities of TCNa were tested against human corneal epithelial cells (HCECs) and Artemia salina.
Assuntos
Antibacterianos , Artemia , Testes de Sensibilidade Microbiana , Solubilidade , Tetraciclina , Água , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , Artemia/efeitos dos fármacos , Água/química , Animais , Tetraciclina/farmacologia , Tetraciclina/química , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Sais/química , Sais/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Cristalografia por Raios X , Ânions/química , Ânions/farmacologia , Sódio/química , Estrutura MolecularRESUMO
Two copper(I) polymorphs of formula [Cu(SALH)(TPP)3] (1a and 1b) were prepared by the conjugation of the Non-Steroidal Anti-Inflammatory Drug (NSAID) salicylic acid (SALH2) with the mitochondriotropic agent triphenylphosphine (TPP) via metal ion. For comparison, the isomorph [Ag(SALH)(TPP)3] (2) was prepared. The conjugates 1a, 1b and 2 were characterized by melting point (m.p.), Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-Visible (UV-Vis) spectroscopy and nuclear magnetic resonance (1H NMR). The crystal structures of 1a, 1b and 2 were confirmed by X-ray diffraction crystallography (XRD). The ex vivo binding affinity of 1-2 towards CT (calf thymus)-DNA was studied by UV, fluorescence, viscosity and DNA Thermal Denaturation studies. Their inhibitory activity against lipoxygenase (LOX) (an enzyme which is mainly located in the mitochondrion) was determined. The in vitro activity of 1-2 was evaluated against human breast cancer cell lines MCF-7 (hormone depended (HD)) and MDA-MB 281 (hormone independent (HI)) cells. Compounds 1-2 inhibit stronger than cisplatin the cancerous cells. The molecular mechanism of action of 1-2 was suspected by the MCF-7 cells morphology and confirmed by DNA fragmentation, Acridine Orange/Ethidium Bromide (AO/EB) Staining and mitochondrial membrane permeabilization tests.
Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Humanos , Feminino , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Neoplasias da Mama/tratamento farmacológico , Prata/química , DNA/química , Hormônios , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , CobreRESUMO
The water-soluble coordination polymer of formula {[Pb(Sal)2(H2O)]n} (SaLead), was obtained from the reaction between Pb(NO3)2 and the potassium salt of salicylic acid (SalH), an anti-inflammatory drug, which is also use as food preservation, in cosmetics etc. The compound was characterized by melting point, Attenuated Total Reflectance-Fourier Transform Infra-Red (ATR-FTIR) spectroscopy and X-ray diffraction crystallography (XRD) in solid state and in solution by Ultra Violet (UV) and 1H NMR spectroscopies. The binding affinity of SalK to Pb(II) ions towards SaLead was determined in order to examine its possible implementation in lead detoxification. The in vitro non-toxic behaviour of SalK and its complex SaLead was evaluated against normal human fetal lung fibroblast cells (MRC-5). The corresponding IC50 values are 260 ± 13 and > 1600 µM respectively. The non-genotoxic in vitro activity of SaLead was confirmed with the micronucleus (MN) assay, while its in vivo non-toxicity behaviour was evaluated with Allium cepa and Artemia salina assays.
Assuntos
Chumbo , Ácido Salicílico , Humanos , Chumbo/toxicidade , Ácido Salicílico/farmacologia , Cristalografia por Raios X , Cebolas , ÂnionsRESUMO
{[Ag8(Mef)8(µ2-S,O-DMSO)2(µ2-O-DMSO)2(O-DMSO)8]·2(H2O)} (1), [Ag(Mef)(tpP)2] (2), [Ag(Mef)(tpAs)3] (3), and {2 [Ag(Mef)(tpSb)3] (DMSO)} (4) were obtained by the conjugation of mefenamic acid (MefH), a nonsteroidal anti-inflammatory drug (NSAID), with a mitochondriotropic derivative of pnictogen tpE (tp = triphenyl group; E = P, As, and Sb) through silver(I). Their hydrophilicity was adjusted by their dispersion into sodium lauryl sulfate (SLS), forming SLS@1-4. 1-4 and SLS@1-4 were characterized by their spectral data and X-ray crystallography. They inhibit the proliferation of human breast adenocarcinoma cells MCF-7 (hormone-dependent (HD)) and MDA-MB-231 (hormone-independent (HI)). X-ray fluorescence reveals the Ag cellular uptake. The in vitro and in vivo nongenotoxicity was confirmed with micronucleus (MN), Artemia salina, and Allium cepa assays. Their mechanism of action was studied by cell morphology, DNA fragmentation, acridine orange/ethidium bromide (AO/EB) staining, cell cycle arrest, mitochondrial membrane permeabilization tests, DNA binding affinity, and LOX inhibitory activity and was rationalized by regression analysis.
Assuntos
Complexos de Coordenação , Dimetil Sulfóxido , Humanos , Complexos de Coordenação/química , Anti-Inflamatórios/farmacologia , Apoptose , Hormônios/farmacologia , Linhagem Celular TumoralRESUMO
In order to investigate the coordination chemistry and pharmacological applications of bismuth compounds, a series of new bismuth(III) halide thiosemicarbazone complexes were synthesized. The reactions of thiophene-2-carbaldehyde-N-substituted thiosemicarbazones with bismuth(III) halides resulted in the formation of the {[[BiCl2(η1-S-Httsc)4]+.Cl-][BiCl2(µ2-Cl)(η1-S-Httsc)2]2} (1), {[BiCl3(η1-S-Htmtsc)3].CH3OH} (2), {[BiCl3(η1-S-Htetsc)3].CH3OH} (3), {[BiBr2(µ2-Br)(η1-S-Httsc)2]2.CH3OH} (4), {[BiBr2(µ2-Br)(η1-S-Htmtsc)2]n} (5), and {[BiI2(µ2-I)(η1-S-Httsc)2]2} (6) complexes (Httsc: thiophene-2-carbaldehyde thiosemicarbazone, Htmtsc: thiophene-2-carbaldehyde-N-methyl thiosemicarbazone, Htetsc: thiophene-2-carbaldehyde-N-ethyl thiosemicarbazone). The complexes were characterized by a number of different spectroscopic techniques and the crystal structures of all bismuth(III) complexes (1-6) were determined by using single crystal X-ray diffraction study. In addition, the thermal stability of the complexes was compared using Thermogravimetric-differential thermal analysis. Crystal structures of the two free ligands, thiophene-2-carbaldehyde-N-methyl-thiosemicarbazone and thiophene-2-carbaldehyde-N-ethyl-thiosemicarbazone, were also determined by using single crystal X-ray diffraction analysis. The Hirshfeld surface of the bismuth(III) complexes and free ligands were additionally analyzed to verify the intermolecular interactions. Biological studies showed that all six bismuth(III) thiosemicarbazone complexes (1-6) exhibited biological activities against selected bacteria and the human breast adenocarcinoma (MCF-7) cell line.
Assuntos
Complexos de Coordenação , Tiossemicarbazonas , Humanos , Tiossemicarbazonas/química , Bismuto/farmacologia , Bismuto/química , Tiofenos/farmacologia , Cristalografia por Raios X , Ligantes , Complexos de Coordenação/química , Estrutura MolecularRESUMO
The in vivo toxicity of new metallodrugs either as Small Bioactive Molecules (SBAMs) or Conjugates of Metals with Drugs (CoMeDs) or their hydrogels such as with hydroxyethyl-methacrylate (HEMA) (pHEMA@SBAMs or pHEMA@CoMeDs) are evaluated by the brine shrimp assay. Thus individuals of Artemia salina larvae are incubated in saline solutions with SBAMs, CoMeDs, pHEMA@SBAMs or pHEMA@CoMeDs or without for 24 h. The toxicity is then determined in terms of the mortality rate of brine shrimp larvae. Brine shrimp assay is a low cost, safe, no required feeding during the assay, while it requiring only a small amount of the tested agent.