Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Assunto principal
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629142

RESUMO

Lollingite (FeAs2) is considered an arsenic-bearing mineral that is oxidized faster than arsenopyrite. The geometric configuration, chemical valence bond, and microscopic reaction of the oxidation on the surface of lollingite were systematically studied, which are of great significance for understanding the mechanism of oxidative dissolution. X-ray photoelectron spectroscopy (XPS) measurements and density functional theory (DFT) calculations were carried out to characterize the (101) surface oxidation process of lollingite under the O2/O2 + H2O conditions. XPS results confirmed that the participation of water molecules can promote the formation of abundant OH structures on the surface of lollingite, while the relative concentration of O, As(III), and Fe(III) increased. Moreover, the DFT results demonstrated that the (101) As-terminal plane of FeAs2 was the most stable surface with the lowest surface energy. H2O molecules were physically adsorbed onto the Fe atoms of the lollingite surface, while oxygen molecules can readily be adsorbed on the Fe-As2 site by chemical adsorption processes. The oxidation process of the lollingite surface with water includes the following mechanisms: adsorption, dissociation, formation of the hydrogen bond, and desorption. The dissociation of the H2O molecule into OH and H led to the hydroxylation of both Fe and As atoms and the formation of hydrogen bonding. The participation of H2O molecules can also reduce the reaction energy barrier and accelerate the oxidation reaction of the lollingite surface, especially as far as the water dissociation and formation of hydrogen bonds are concerned. According to PDOS data, there is considerable hybridization between the d orbitals of bonded Fe atoms and the p orbitals of O atoms, as well as between the p orbitals of bonded As atoms and the p orbitals of O atoms. Due to a strong propensity for orbital hybridization and bonding between the s orbitals of the H atoms in H2O molecules and the p orbitals of the O atoms on the (101) surface, water molecules have the ability to speed up the oxidation on the surface.

2.
J Environ Manage ; 300: 113715, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34649326

RESUMO

The proper treatment of lollingite is of great significance due to its rapid oxidation leading to release of arsenic into the environment. Herein, a green multi-solid waste geopolymer, consisting of red mud, metakaolin, blast furnace slag, and flue gas desulfurization gypsum, was developed. The obtained red mud-metakaolin-based (RMM) geopolymer demonstrated good arsenic retention capability. The results showed that the replacement of SO42- in ettringite with AsO42- via ion exchange, formation of Ca-As and Fe-As precipitates, and physical encapsulation with aluminosilicate gel were the main mechanisms that prevented the release of arsenic. Further dissolution of ettringite in RMM was alleviated by adding a suitable amount of Ca(OH)2 and controlling the pH of the leachate. TCLP results verified that RMM materials possessed an outstanding ability to stabilize arsenic, with a leaching rate below the permitted value of 5 mg/L for safe disposal. The low leachability of the RMM geopolymers (<0.50 mg/L) is potentially related to the pH buffering capacity of the hydration products at a pH range of 2-5. RMM geopolymers showed a high compressive strength (>15 MPa) and low arsenic leaching concentration (<2.66 mg/L) after 28 days of curing. These results demonstrate the potential of RMM geopolymers to be utilized as an environmentally friendly backfilling cementitious material for sustainable remediation of arsenic pollution.


Assuntos
Arsênio , Sulfato de Cálcio , Resíduos Industriais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA