Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Annu Rev Cell Dev Biol ; 38: 179-218, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35804477

RESUMO

Mitochondria are traditionally known as the powerhouse of the cell, but their functions extend far beyond energy production. They are vital in cellular and organismal pathways that direct metabolism, stress responses, immunity, and cellular fate. To accomplish these tasks, mitochondria have established networks of both intra- and extracellular communication. Intracellularly, these communication routes comprise direct contacts between mitochondria and other subcellular components as well as indirect vesicle transport of ions, metabolites, and other intracellular messengers. Extracellularly, mitochondria can induce stress responses or other cellular changes that secrete mitochondrial cytokine (mitokine) factors that can travel between tissues as well as respond to immune challenges from extracellular sources. Here we provide a current perspective on the major routes of communication for mitochondrial signaling, including their mechanisms and physiological impact. We also review the major diseases and age-related disorders associated with defects in these signaling pathways. An understanding of how mitochondrial signaling controls cellular homeostasis will bring greater insight into how dysfunctional mitochondria affect health in disease and aging.


Assuntos
Mitocôndrias , Transdução de Sinais , Citocinas/metabolismo , Homeostase , Mitocôndrias/metabolismo
2.
Cell ; 179(6): 1306-1318.e18, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31761535

RESUMO

Cells have evolved complex mechanisms to maintain protein homeostasis, such as the UPRER, which are strongly associated with several diseases and the aging process. We performed a whole-genome CRISPR-based knockout (KO) screen to identify genes important for cells to survive ER-based protein misfolding stress. We identified the cell-surface hyaluronidase (HAase), Transmembrane Protein 2 (TMEM2), as a potent modulator of ER stress resistance. The breakdown of the glycosaminoglycan, hyaluronan (HA), by TMEM2 within the extracellular matrix (ECM) altered ER stress resistance independent of canonical UPRER pathways but dependent upon the cell-surface receptor, CD44, a putative HA receptor, and the MAPK cell-signaling components, ERK and p38. Last, and most surprisingly, ectopic expression of human TMEM2 in C. elegans protected animals from ER stress and increased both longevity and pathogen resistance independent of canonical UPRER activation but dependent on the ERK ortholog mpk-1 and the p38 ortholog pmk-1.


Assuntos
Caenorhabditis elegans/fisiologia , Retículo Endoplasmático/metabolismo , Hialuronoglucosaminidase/metabolismo , Longevidade/fisiologia , Proteínas de Membrana/metabolismo , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/imunologia , Linhagem Celular , Proliferação de Células , Resistência à Doença , Estresse do Retículo Endoplasmático , Fibroblastos/metabolismo , Humanos , Imunidade Inata , Modelos Biológicos , Peso Molecular , Transdução de Sinais
3.
Mol Cell ; 73(4): 643-644, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30794792

RESUMO

Molecular mechanisms regulating aging at the post-transcriptional level are not clear. In this issue of Molecular Cell,D'Amico et al. (2019) demonstrate that the translational inhibition of mitochondrial fission factor (MFF) regulates cellular homeostasis and aging.


Assuntos
Dinâmica Mitocondrial , Mitofagia , Longevidade , Proteínas de Membrana , Proteínas Mitocondriais , Proteínas de Ligação a RNA
4.
Mol Cell ; 70(6): 1121-1133.e9, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29910110

RESUMO

DNA replication introduces a dosage imbalance between early and late replicating genes. In budding yeast, buffering gene expression against this imbalance depends on marking replicated DNA by H3K56 acetylation (H3K56ac). Whether additional processes are required for suppressing transcription from H3K56ac-labeled DNA remains unknown. Here, using a database-guided candidate screen, we find that COMPASS, the H3K4 methyltransferase, and its upstream effector, PAF1C, act downstream of H3K56ac to buffer expression. Replicated genes show reduced abundance of the transcription activating mark H3K4me3 and accumulate the transcription inhibitory mark H3K4me2 near transcription start sites. Notably, in hydroxyurea-exposed cells, the S phase checkpoint stabilizes H3K56ac and becomes essential for buffering. We suggest that H3K56ac suppresses transcription of replicated genes by interfering with post-replication recovery of epigenetic marks and assign a new function for the S phase checkpoint in stabilizing this mechanism during persistent dosage imbalance.


Assuntos
Replicação do DNA/fisiologia , Histonas/metabolismo , Acetilação , Pontos de Checagem do Ciclo Celular/genética , Replicação do DNA/genética , Epigênese Genética/fisiologia , Epigenômica/métodos , Regulação Fúngica da Expressão Gênica/genética , Histona Acetiltransferases/metabolismo , Histona Metiltransferases/metabolismo , Histonas/fisiologia , Homeostase/genética , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
PLoS Biol ; 17(8): e3000423, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31442222

RESUMO

Splicing expands, reshapes, and regulates the transcriptome of eukaryotic organisms. Despite its importance, key questions remain unanswered, including the following: Can splicing evolve when organisms adapt to new challenges? How does evolution optimize inefficiency of introns' splicing and of the splicing machinery? To explore these questions, we evolved yeast cells that were engineered to contain an inefficiently spliced intron inside a gene whose protein product was under selection for an increased expression level. We identified a combination of mutations in Cis (within the gene of interest) and in Trans (in mRNA-maturation machinery). Surprisingly, the mutations in Cis resided outside of known intronic functional sites and improved the intron's splicing efficiency potentially by easing tight mRNA structures. One of these mutations hampered a protein's domain that was not under selection, demonstrating the evolutionary flexibility of multi-domain proteins as one domain functionality was improved at the expense of the other domain. The Trans adaptations resided in two proteins, Npl3 and Gbp2, that bind pre-mRNAs and are central to their maturation. Interestingly, these mutations either increased or decreased the affinity of these proteins to mRNA, presumably allowing faster spliceosome recruitment or increased time before degradation of the pre-mRNAs, respectively. Altogether, our work reveals various mechanistic pathways toward optimizations of intron splicing to ultimately adapt gene expression patterns to novel demands.


Assuntos
Adaptação Biológica/genética , Splicing de RNA/genética , Trans-Splicing/genética , Adaptação Biológica/fisiologia , Evolução Molecular , Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Íntrons/genética , Mutação , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/metabolismo
6.
EMBO Rep ; 21(6): e50094, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32449292

RESUMO

Multicellular organisms are complex biological systems, composed of specialized tissues that require coordination of the metabolic and fitness state of each component. In the cells composing the tissues, one central organelle is the mitochondrion, a compartment essential for many energetic and fundamental biological processes. Beyond serving these functions, mitochondria have emerged as signaling hubs in biological systems, capable of inducing changes to the cell they are in, to cells in distal tissues through secreted factors, and to overall animal physiology. Here, we describe our current understanding of these communication mechanisms in the context of mitochondrial stress. We focus on cellular mechanisms that deal with perturbations to the mitochondrial proteome and outline recent advances in understanding how local perturbations can affect distal tissues and animal physiology in model organisms. Finally, we discuss recent findings of these responses associated with metabolic and age-associated diseases in mammalian systems, and how they may be employed as diagnostic and therapeutic tools.


Assuntos
Mitocôndrias , Transdução de Sinais , Animais , Mamíferos , Mitocôndrias/genética , Proteoma
7.
Trends Genet ; 32(11): 717-723, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27575299

RESUMO

DNA replication perturbs the dosage balance between genes that replicate early during S phase and those that replicate late. If propagated to influence protein content, this dosage imbalance could influence cellular functions. In bacteria, mechanisms have evolved to use this imbalance to tune certain processes with the rate of cell growth. By contrast, eukaryotes buffer this dosage imbalance to ensure gene expression homeostasis also during S phase. Here, we outline classical and more recent studies describing how different organisms deal with this replication-dependent dosage imbalance, and describe recent results linking the eukaryotic buffering mechanism to replication-dependent histone acetylation. Finally, we discuss the possible implications of this buffering mechanism and speculate why it is specific to eukaryote cells.


Assuntos
Replicação do DNA/genética , Dosagem de Genes/genética , Fase S/genética , Transcrição Gênica , Acetilação , Bactérias/genética , Ciclo Celular/genética , Eucariotos/genética , Histonas/genética
8.
Eur J Immunol ; 48(7): 1137-1152, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29624673

RESUMO

The bone marrow hosts NK cells whose distribution, motility and response to systemic immune challenge are poorly understood. At steady state, two-photon microscopy of the bone marrow in Ncr1gfp/+ mice captured motile NK cells interacting with dendritic cells. NK cells expressed markers and effector molecules of mature cells. Following poly (I:C) injection, RNA-Seq of NK cells revealed three phases of transcription featuring immune response genes followed by posttranscriptional processes and proliferation. Functionally, poly (I:C) promoted upregulation of granzyme B, enhanced cytotoxicity in vitro and in vivo, and, in the same individual cells, triggered proliferation. Two-photon imaging revealed that the proportion of sinusoidal NK cells decreased, while at the same time parenchymal NK cells accelerated, swelled and divided within the bone marrow. MVA viremia induced similar responses. Our findings demonstrate that the bone marrow is patrolled by mature NK cells that rapidly proliferate in response to systemic viral challenge while maintaining their effector functions.


Assuntos
Medula Óssea/imunologia , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Viremia/imunologia , Animais , Antígenos Ly/genética , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Citotoxicidade Imunológica , Granzimas/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Poli I-C/imunologia , Ativação Viral
9.
Genome Res ; 26(9): 1245-56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27225843

RESUMO

Chromatin is composed of DNA and histones, which provide a unified platform for regulating DNA-related processes, mostly through their post-translational modification. During DNA replication, histone arrangement is perturbed, first to allow progression of DNA polymerase and then during repackaging of the replicated DNA. To study how DNA replication influences the pattern of histone modification, we followed the cell-cycle dynamics of 10 histone marks in budding yeast. We find that histones deposited on newly replicated DNA are modified at different rates: While some marks appear immediately upon replication (e.g., H4K16ac, H3K4me1), others increase with transcription-dependent delays (e.g., H3K4me3, H3K36me3). Notably, H3K9ac was deposited as a wave preceding the replication fork by ∼5-6 kb. This replication-guided H3K9ac was fully dependent on the acetyltransferase Rtt109, while expression-guided H3K9ac was deposited by Gcn5. Further, topoisomerase depletion intensified H3K9ac in front of the replication fork and in sites where RNA polymerase II was trapped, suggesting supercoiling stresses trigger H3K9 acetylation. Our results assign complementary roles for DNA replication and gene expression in defining the pattern of histone modification.


Assuntos
Replicação do DNA/genética , Histona Acetiltransferases/genética , Código das Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Acetilação , Cromatina , DNA Polimerase Dirigida por DNA/genética , Histona-Lisina N-Metiltransferase/genética , Histonas , RNA Polimerase II/genética , Saccharomycetales/genética
10.
Genome Res ; 22(12): 2409-17, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22820945

RESUMO

Gene expression depends on the frequency of transcription events (burst frequency) and on the number of mRNA molecules made per event (burst size). Both processes are encoded in promoter sequence, yet their dependence on mutations is poorly understood. Theory suggests that burst size and frequency can be distinguished by monitoring the stochastic variation (noise) in gene expression: Increasing burst size will increase mean expression without changing noise, while increasing burst frequency will increase mean expression and decrease noise. To reveal principles by which promoter sequence regulates burst size and frequency, we randomly mutated 22 yeast promoters chosen to span a range of expression and noise levels, generating libraries of hundreds of sequence variants. In each library, mean expression (m) and noise (coefficient of variation, η) varied together, defining a scaling curve: η(2) = b/m + η(ext)(2). This relation is expected if sequence mutations modulate burst frequency primarily. The estimated burst size (b) differed between promoters, being higher in promoter containing a TATA box and lacking a nucleosome-free region. The rare variants that significantly decreased b were explained by mutations in TATA, or by an insertion of an out-of-frame translation start site. The decrease in burst size due to mutations in TATA was promoter-dependent, but independent of other mutations. These TATA box mutations also modulated the responsiveness of gene expression to changing conditions. Our results suggest that burst size is a promoter-specific property that is relatively robust to sequence mutations but is strongly dependent on the interaction between the TATA box and promoter nucleosomes.


Assuntos
Regulação Fúngica da Expressão Gênica , Mutação , Saccharomyces cerevisiae/genética , TATA Box/genética , Sítios de Ligação/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicerol-3-Fosfato Desidrogenase (NAD+)/genética , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
bioRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37609253

RESUMO

The nervous system plays a critical role in maintaining whole-organism homeostasis; neurons experiencing mitochondrial stress can coordinate the induction of protective cellular pathways, such as the mitochondrial unfolded protein response (UPRMT), between tissues. However, these studies largely ignored non-neuronal cells of the nervous system. Here, we found that UPRMT activation in four, astrocyte-like glial cells in the nematode, C. elegans, can promote protein homeostasis by alleviating protein aggregation in neurons. Surprisingly, we find that glial cells utilize small clear vesicles (SCVs) to signal to neurons, which then relay the signal to the periphery using dense-core vesicles (DCVs). This work underlines the importance of glia in establishing and regulating protein homeostasis within the nervous system, which can then impact neuron-mediated effects in organismal homeostasis and longevity.

12.
Aging Cell ; 22(1): e13742, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36404134

RESUMO

The actin cytoskeleton is a three-dimensional scaffold of proteins that is a regulatory, energyconsuming network with dynamic properties to shape the structure and function of the cell. Proper actin function is required for many cellular pathways, including cell division, autophagy, chaperone function, endocytosis, and exocytosis. Deterioration of these processes manifests during aging and exposure to stress, which is in part due to the breakdown of the actin cytoskeleton. However, the regulatory mechanisms involved in preservation of cytoskeletal form and function are not well-understood. Here, we performed a multipronged, cross-organismal screen combining a whole-genome CRISPR-Cas9 screen in human fibroblasts with in vivo Caenorhabditis elegans synthetic lethality screening. We identified the bromodomain protein, BET-1, as a key regulator of actin function and longevity. Overexpression of bet-1 preserves actin function at late age and promotes life span and healthspan in C. elegans. These beneficial effects are mediated through actin preservation by the transcriptional regulator function of BET-1. Together, our discovery assigns a key role for BET-1 in cytoskeletal health, highlighting regulatory cellular networks promoting cytoskeletal homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Humanos , Longevidade/genética , Actinas/genética , Actinas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo
13.
Sci Adv ; 9(41): eadi1411, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831769

RESUMO

The nervous system plays a critical role in maintaining whole-organism homeostasis; neurons experiencing mitochondrial stress can coordinate the induction of protective cellular pathways, such as the mitochondrial unfolded protein response (UPRMT), between tissues. However, these studies largely ignored nonneuronal cells of the nervous system. Here, we found that UPRMT activation in four astrocyte-like glial cells in the nematode, Caenorhabditis elegans, can promote protein homeostasis by alleviating protein aggregation in neurons. Unexpectedly, we find that glial cells use small clear vesicles (SCVs) to signal to neurons, which then relay the signal to the periphery using dense-core vesicles (DCVs). This work underlines the importance of glia in establishing and regulating protein homeostasis within the nervous system, which can then affect neuron-mediated effects in organismal homeostasis and longevity.


Assuntos
Proteínas de Caenorhabditis elegans , Proteostase , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neurônios/metabolismo , Caenorhabditis elegans/metabolismo , Envelhecimento , Neuroglia/metabolismo
14.
iScience ; 25(7): 104571, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35784796

RESUMO

The deleterious potential to generate oxidative stress is a fundamental challenge to metabolism. The oxidative stress response transcription factor, SKN-1/NRF2, can sense and respond to changes in metabolic state, although the mechanism and consequences of this remain unknown. Here, we performed a genetic screen in C. elegans targeting amino acid catabolism and identified multiple metabolic pathways as regulators of SKN-1 activity. We found that knockdown of the conserved amidohydrolase T12A2.1/amdh-1 activates a unique subset of SKN-1 regulated genes. Interestingly, this transcriptional program is independent of canonical P38-MAPK signaling components but requires ELT-3, NHR-49 and MDT-15. This activation of SKN-1 is dependent on upstream histidine catabolism genes HALY-1 and Y51H4A.7/UROC-1 and may occur through accumulation of a catabolite, 4-imidazolone-5-propanoate. Activating SKN-1 results in increased oxidative stress resistance but decreased survival to heat stress. Together, our data suggest that SKN-1 acts downstream of key catabolic pathways to influence physiology and stress resistance.

15.
Sci Adv ; 7(44): eabj6818, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714674

RESUMO

The dysfunction of mitochondria is associated with the physiological consequences of aging and many age-related diseases. Therefore, critical quality control mechanisms exist to protect mitochondrial functions, including the unfolded protein response of the mitochondria (UPRMT). However, it is still unclear how UPRMT is regulated in mammals with mechanistic discrepancies between previous studies. Here, we reasoned that a study of conserved mechanisms could provide a uniquely powerful way to reveal previously uncharacterized components of the mammalian UPRMT. We performed cross-species comparison of genetic requirements for survival under­and in response to­mitochondrial stress between karyotypically normal human stem cells and the nematode Caenorhabditis elegans. We identified a role for EPS-8/EPS8 (epidermal growth factor receptor pathway substrate 8), a signaling protein adaptor, in general mitochondrial homeostasis and UPRMT regulation through integrin-mediated remodeling of the actin cytoskeleton. This study also highlights the use of cross-species comparisons in genetic screens to interrogate cellular pathways.

16.
Cell Rep ; 30(12): 3989-3995.e4, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209462

RESUMO

Genome replication perturbs the DNA regulatory environment by displacing DNA-bound proteins, replacing nucleosomes, and introducing dosage imbalance between regions replicating at different S-phase stages. Recently, we showed that these effects are integrated to maintain transcription homeostasis: replicated genes increase in dosage, but their expression remains stable due to replication-dependent epigenetic changes that suppress transcription. Here, we examine whether reduced transcription from replicated DNA results from limited accessibility to regulatory factors by measuring the time-resolved binding of RNA polymerase II (Pol II) and specific transcription factors (TFs) to DNA during S phase in budding yeast. We show that the Pol II binding pattern is largely insensitive to DNA dosage, indicating limited binding to replicated DNA. In contrast, binding of three TFs (Reb1, Abf1, and Rap1) to DNA increases with the increasing DNA dosage. We conclude that the replication-specific chromatin environment remains accessible to regulatory factors but suppresses RNA polymerase recruitment.


Assuntos
Replicação do DNA , DNA Fúngico/metabolismo , Fatores de Transcrição/metabolismo , Genoma Fúngico , Ligação Proteica , RNA Polimerase II/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
J Vis Exp ; (159)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32510480

RESUMO

Organisms are often exposed to fluctuating environments and changes in intracellular homeostasis, which can have detrimental effects on their proteome and physiology. Thus, organisms have evolved targeted and specific stress responses dedicated to repair damage and maintain homeostasis. These mechanisms include the unfolded protein response of the endoplasmic reticulum (UPRER), the unfolded protein response of the mitochondria (UPRMT), the heat shock response (HSR), and the oxidative stress response (OxSR). The protocols presented here describe methods to detect and characterize the activation of these pathways and their physiological consequences in the nematode, C. elegans. First, the use of pathway-specific fluorescent transcriptional reporters is described for rapid cellular characterization, drug screening, or large-scale genetic screening (e.g., RNAi or mutant libraries). In addition, complementary, robust physiological assays are described, which can be used to directly assess sensitivity of animals to specific stressors, serving as functional validation of the transcriptional reporters. Together, these methods allow for rapid characterization of the cellular and physiological effects of internal and external proteotoxic perturbations.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Resposta ao Choque Térmico , Estresse Oxidativo , Estresse Fisiológico , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/genética , Homeostase , Mitocôndrias/metabolismo
18.
Science ; 367(6476): 436-440, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31974253

RESUMO

The ability of the nervous system to sense cellular stress and coordinate protein homeostasis is essential for organismal health. Unfortunately, stress responses that mitigate disturbances in proteostasis, such as the unfolded protein response of the endoplasmic reticulum (UPRER), become defunct with age. In this work, we expressed the constitutively active UPRER transcription factor, XBP-1s, in a subset of astrocyte-like glia, which extended the life span in Caenorhabditis elegans Glial XBP-1s initiated a robust cell nonautonomous activation of the UPRER in distal cells and rendered animals more resistant to protein aggregation and chronic ER stress. Mutants deficient in neuropeptide processing and secretion suppressed glial cell nonautonomous induction of the UPRER and life-span extension. Thus, astrocyte-like glial cells play a role in regulating organismal ER stress resistance and longevity.


Assuntos
Caenorhabditis elegans/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Longevidade , Neuroglia/fisiologia , Neuropeptídeos/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Mutação , Agregados Proteicos/fisiologia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
19.
Sci Adv ; 6(26): eaaz9805, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32637599

RESUMO

Recent work has highlighted the fact that lysosomes are a critical signaling hub of metabolic processes, providing fundamental building blocks crucial for anabolic functions. How lysosomal functions affect other cellular compartments is not fully understood. Here, we find that lysosomal recycling of the amino acids lysine and arginine is essential for proper ER quality control through the UPRER. Specifically, loss of the lysine and arginine amino acid transporter LAAT-1 results in increased sensitivity to proteotoxic stress in the ER and decreased animal physiology. We find that these LAAT-1-dependent effects are linked to glycine metabolism and transport and that the loss of function of the glycine transporter SKAT-1 also increases sensitivity to ER stress. Direct lysine and arginine supplementation, or glycine supplementation alone, can ameliorate increased ER stress sensitivity found in laat-1 mutants. These data implicate a crucial role in recycling lysine, arginine, and glycine in communication between the lysosome and ER.

20.
Science ; 351(6277): 1087-90, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26941319

RESUMO

Genome replication introduces a stepwise increase in the DNA template available for transcription. Genes replicated early in S phase experience this increase before late-replicating genes, raising the question of how expression levels are affected by DNA replication. We show that in budding yeast, messenger RNA (mRNA) synthesis rate is buffered against changes in gene dosage during S phase. This expression homeostasis depends on acetylation of H3 on its internal K56 site by Rtt109/Asf1. Deleting these factors, mutating H3K56 or up-regulating its deacetylation, increases gene expression in S phase in proportion to gene replication timing. Therefore, H3K56 acetylation on newly deposited histones reduces transcription efficiency from replicated DNA, complementing its role in guarding genome stability. Our study provides molecular insight into the mechanism maintaining expression homeostasis during DNA replication.


Assuntos
Replicação do DNA/fisiologia , Regulação Fúngica da Expressão Gênica , Instabilidade Genômica , Homeostase/genética , Saccharomyces cerevisiae/fisiologia , Acetilação , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Dosagem de Genes , Genoma Fúngico , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , Fase S , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA