Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2317274121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579010

RESUMO

Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of Escherichia coli. We recognized common structural elements between this hit and a previously published inhibitor, also with activity against efflux-deficient bacteria. With the help of X-ray structures, this information was used to design inhibitors with activity on efflux-proficient, wild-type strains. Optimization of properties such as solubility, metabolic stability and serum protein binding resulted in compounds having potent in vivo efficacy against bloodstream infections caused by the critical Gram-negative pathogens E. coli and Klebsiella pneumoniae. Other favorable properties of the series include a lack of pre-existing resistance in clinical isolates, and no loss of activity against strains expressing extended-spectrum-ß-lactamase, metallo-ß-lactamase, or carbapenemase-resistance genes. Further development of this class of antibiotics could make an important contribution to the ongoing struggle against antibiotic resistance.


Assuntos
Antibacterianos , Lipopolissacarídeos , Humanos , Antibacterianos/química , Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
2.
Nature ; 508(7495): 215-21, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24695224

RESUMO

Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.


Assuntos
Enzimas Reparadoras do DNA/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nucleotídeos/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Animais , Domínio Catalítico , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalização , Dano ao DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Conformação Molecular , Terapia de Alvo Molecular , Neoplasias/patologia , Oxirredução/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirofosfatases/antagonistas & inibidores , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto , Nudix Hidrolases
4.
Eur J Clin Pharmacol ; 70(2): 167-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24186263

RESUMO

PURPOSE: Static and dynamic (PBPK) prediction models were applied to estimate the drug-drug interaction (DDI) risk of AZD2066. The predictions were compared to the results of an in vivo cocktail study. Various in vivo measures for tolbutamide as a probe agent for cytochrome P450 2C9 (CYP2C9) were also compared. METHODS: In vitro inhibition data for AZD2066 were obtained using human liver microsomes and CYP-specific probe substrates. DDI prediction was performed using PBPK modelling with the SimCYP simulator™ or static model. The cocktail study was an open label, baseline, controlled interaction study with 15 healthy volunteers receiving multiple doses of AD2066 for 12 days. A cocktail of single doses of 100 mg caffeine (CYP1A2 probe), 500 mg tolbutamide (CYP2C9 probe), 20 mg omeprazole (CYP2C19 probe) and 7.5 mg midazolam (CYP3A probe) was simultaneously applied at baseline and during the administration of AZD2066. Bupropion as a CYP2B6 probe (150 mg) and 100 mg metoprolol (CYP2D6 probe) were administered on separate days. The pharmacokinetic parameters for the probe drugs and their metabolites in plasma and urinary recovery were determined. RESULTS: In vitro AZD2066 inhibited CYP1A2, CYP2B6, CYP2C9, CYP2C19 and CYP2D6. The static model predicted in vivo interaction with predicted AUC ratio values of >1.1 for all CYP (except CYP3A4). The PBPK simulations predicted no risk for clinical relevant interactions. The cocktail study showed no interaction for the CYP2B6 and CYP2C19 enzymes, a possible weak inhibition of CYP1A2, CYP2C9 and CYP3A4 activities and a slight inhibition (29 %) of CYP2D6 activity. The tolbutamide phenotyping metrics indicated that there were significant correlations between CLform and AUCTOL, CL, Aemet and LnTOL24h. The MRAe in urine showed no correlation to CLform. CONCLUSIONS: DDI prediction using the static approach based on total concentration indicated that AZD20066 has a potential risk for inhibition. However, no DDI risk could be predicted when a more in vivo-like dynamic prediction method with the PBPK with SimCYP™ software based on early human PK data was used and more parameters (i.e. free fraction in plasma, no DDI risk) were taken into account. The clinical cocktail study showed no or low risks for clinical relevant DDI interactions. Our findings are in line with the hypothesis that the dynamic prediction method predicts DDI in vivo in humans better than the static model based on total plasma concentrations.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Isoxazóis/farmacocinética , Modelos Biológicos , Triazóis/farmacocinética , Adulto , Inibidores das Enzimas do Citocromo P-450 , Interações Medicamentosas , Humanos , Isoxazóis/sangue , Isoxazóis/farmacologia , Isoxazóis/urina , Masculino , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Triazóis/sangue , Triazóis/farmacologia , Triazóis/urina , Adulto Jovem
5.
Basic Clin Pharmacol Toxicol ; 134(1): 153-164, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37811726

RESUMO

Data on drug transfer into human breast milk are sparse. This study aimed to quantify concentrations of cetirizine and levocetirizine in breast milk and to estimate drug exposure to infants. Breastfeeding women at least 8 weeks postpartum and using cetirizine or its pure (R)-enantiomer levocetirizine were eligible to participate. Breast milk samples were collected at six predefined times during a dose interval (0, 2, 4, 8, 12 and 24 h after drug intake) at steady state. Infant drug exposure was estimated by calculating the absolute infant dose (AID) and the weight-adjusted relative infant dose (RID). In total, 32 women were eligible for final inclusion, 31 women using cetirizine and one woman using levocetirizine. Means of the individual maximum and average cetirizine milk concentrations were 41.0 and 16.8 µg/L, respectively. Maximum concentrations occurred on average 2.4 h after intake, and the mean half-life in milk was 7.0 h. Estimated AID and RID for cetirizine in a day were 2.5 µg/kg and 1.9%, respectively. The corresponding values for levocetirizine were 1.1 µg/kg and 1.9%. No severe adverse events were reported. Our findings demonstrate that the transfer of cetirizine and levocetirizine into breast milk is low and compatible with breastfeeding.


Assuntos
Aleitamento Materno , Cetirizina , Lactente , Humanos , Feminino , Cetirizina/efeitos adversos , Leite Humano , Lactação
6.
Sci Adv ; 10(32): eadn1524, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39110804

RESUMO

Artificial intelligence is revolutionizing protein structure prediction, providing unprecedented opportunities for drug design. To assess the potential impact on ligand discovery, we compared virtual screens using protein structures generated by the AlphaFold machine learning method and traditional homology modeling. More than 16 million compounds were docked to models of the trace amine-associated receptor 1 (TAAR1), a G protein-coupled receptor of unknown structure and target for treating neuropsychiatric disorders. Sets of 30 and 32 highly ranked compounds from the AlphaFold and homology model screens, respectively, were experimentally evaluated. Of these, 25 were TAAR1 agonists with potencies ranging from 12 to 0.03 µM. The AlphaFold screen yielded a more than twofold higher hit rate (60%) than the homology model and discovered the most potent agonists. A TAAR1 agonist with a promising selectivity profile and drug-like properties showed physiological and antipsychotic-like effects in wild-type but not in TAAR1 knockout mice. These results demonstrate that AlphaFold structures can accelerate drug discovery.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Camundongos , Humanos , Camundongos Knockout , Psicotrópicos/farmacologia , Psicotrópicos/química , Simulação de Acoplamento Molecular , Ligantes
7.
Drug Metab Dispos ; 41(1): 159-69, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23073735

RESUMO

Time-dependent inhibition (TDI) of the cytochrome P450 (P450) family of enzymes is usually studied in human liver microsomes (HLM) by investigating whether the inhibitory potency is increased with increased incubation times. The presented work was initiated after a discrepancy was observed for the TDI of an important P450 enzyme, CYP3A4, during early studies of the investigational drug compound AZD3839 [(S)-1-(2-(difluoromethyl)pyridin-4-yl)-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine hemifumarate]; TDI was detected using a regulatory method but not with an early screening method. We show here that the different solvents present in the respective studies, dimethyl sulfoxide (DMSO, screening method) versus methanol or water (regulatory method), were responsible for the different TDI results. We further demonstrate why DMSO, present at the levels of 0.2% and 0.5% in the incubations, masked the TDI effect. In addition to the TDI experiments performed in HLM, TDI studies with AZD3839 were performed in pooled human hepatocytes (Hhep) from different suppliers, using DMSO, methanol, or water. The results from these experiments show no TDI or attenuated TDI effect, depending on the supplier. Metabolite identification of the compound dissolved in DMSO, methanol, or water shows different profiles after incubations with the different systems (HLM or Hhep), which may explain the differences in the TDI outcomes. Thorough investigations of the biotransformation of AZD3839 have been performed to find the reactive pathway causing the TDI of CYP3A4, and are presented here. Our findings show that the in vitro risk profile for drug-drug interactions potential of AZD3839 is very much dependent on the chosen test system and the experimental conditions used.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Inibidores Enzimáticos/farmacocinética , Hepatócitos/efeitos dos fármacos , Indóis/farmacocinética , Microssomos Hepáticos/efeitos dos fármacos , Pirimidinas/farmacocinética , Solventes/farmacologia , Biotransformação , Células Cultivadas , Citocromo P-450 CYP3A , Inibidores Enzimáticos/farmacologia , Meia-Vida , Hepatócitos/enzimologia , Humanos , Indóis/farmacologia , Microssomos Hepáticos/enzimologia , Pirimidinas/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-35732105

RESUMO

The majority of women have health problems that require medication after giving birth. Complications such as allergies, postpartum depression, and diabetes are often treated with drugs such as cetirizine, venlafaxine, and metformin, respectively. These treatments are considered safe during lactation, but information of the transfer of drugs to breast milk and possible effects on the infant is scarce. Therefore, this needs to be systematically investigated in larger populations. To enable the determination of drug transfer, we here describe the validation of two rapid, sensitive, and high-throughput analysis methods for 1) simultaneous quantification of cetirizine, venlafaxine, and O-desmethylvenlafaxine in human breast milk, and 2) metformin in human breast milk and plasma. In both methods, a simple protein precipitation protocol with acetonitrile and benchtop-centrifugation was used prior to compound analysis with liquid-chromatography tandem mass spectrometry. The methods had linear ranges between 0.39 - 194.5 ng/mL for cetirizine, 0.28 - 138.7 ng/mL for venlafaxine, 0.26 - 131.7 ng/mL for O-desmethylvenlafaxine, in milk, and 0.65 - 193.7 ng/mL for metformin in both milk and plasma. Intra-run and inter-run precision and accuracy were ≤ 9% for cetirizine, venlafaxine, and O-desmethylvenlafaxine in milk, and ≤ 7% for metformin in milk and plasma. Cetirizine was measured to median milk concentrations of 13 ng/mL (range: 0.65 - 65 ng/mL) in 228 donor samples from breast-feeding women.


Assuntos
Metformina , Espectrometria de Massas em Tandem , Cetirizina , Cromatografia Líquida de Alta Pressão/métodos , Succinato de Desvenlafaxina , Feminino , Humanos , Lactente , Leite Humano , Gravidez , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Cloridrato de Venlafaxina
9.
Drug Metab Dispos ; 39(4): 644-52, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21245288

RESUMO

Enzyme selective inhibitors represent the most valuable experimental tool for reaction phenotyping. However, only a limited number of UDP-glucuronosyltransferase (UGT) enzyme-selective inhibitors have been identified to date. This study characterized the UGT enzyme selectivity of niflumic acid (NFA). It was demonstrated that 2.5 µM NFA is a highly selective inhibitor of recombinant and human liver microsomal UGT1A9 activity. Higher NFA concentrations (50-100 µM) inhibited UGT1A1 and UGT2B15 but had little effect on the activities of UGT1A3, UGT1A4, UGT1A6, UGT2B4, UGT2B7, and UGT2B17. NFA inhibited 4-methylumbelliferone and propofol (PRO) glucuronidation by recombinant UGT1A9 and PRO glucuronidation by human liver microsomes (HLM) according to a mixed (competitive-noncompetitive) mechanism, with K(i) values ranging from 0.10 to 0.40 µM. Likewise, NFA was a mixed or noncompetitive inhibitor of recombinant and human liver microsomal UGT1A1 (K(i) range 14-18 µM), whereas competitive inhibition (K(i) 62 µM) was observed with UGT2B15. NFA was subsequently applied to the reaction phenotyping of human liver microsomal acetaminophen (APAP) glucuronidation. Consistent with previous reports, APAP was glucuronidated by recombinant UGT1A1, UGT1A6, UGT1A9, and UGT2B15. NFA concentrations in the range of 2.5 to 100 µM inhibited APAP glucuronidation by UGT1A1, UGT1A9, and UGT2B15 but not by UGT1A6. The mean V(max) for APAP glucuronidation by HLM was reduced by 20, 35, and 40%, respectively, in the presence of 2.5, 50, and 100 µM NFA. Mean K(m) values decreased in parallel with V(max), although the magnitude of the decrease was smaller. Taken together, the NFA inhibition data suggest that UGT1A6 is the major enzyme involved in APAP glucuronidation.


Assuntos
Acetaminofen/metabolismo , Analgésicos não Narcóticos/metabolismo , Anti-Inflamatórios não Esteroides/metabolismo , Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Microssomos Hepáticos/enzimologia , Ácido Niflúmico/farmacologia , Analgésicos não Narcóticos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores Enzimáticos/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Células HEK293 , Humanos , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Ácido Niflúmico/metabolismo , Fenótipo , UDP-Glucuronosiltransferase 1A
10.
J Pharm Sci ; 110(1): 2-11, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096136

RESUMO

This issue of the Journal of Pharmaceutical Sciences is dedicated to Professor Per Artursson and the groundbreaking contributions he has made and continues to make in the Pharmaceutical Sciences. Per is one of the most cited researchers in his field, with more than 30,000 citations and an h-index of 95 as of September 2020. Importantly, these citations are distributed over the numerous fields he has explored, clearly showing the high impact the research has had on the discipline. We provide a short portrait of Per, with emphasis on his personality, driving forces and the inspirational sources that shaped his career as a world-leading scientist in the field. He is a curious scientist who deftly moves between disciplines and has continued to innovate, expand boundaries, and profoundly impact the pharmaceutical sciences throughout his career. He has developed new tools and provided insights that have significantly contributed to today's molecular and mechanistic approaches to research in the fields of intestinal absorption, cellular disposition, and exposure-efficacy relationships of pharmaceutical drugs. We want to celebrate these important contributions in this special issue of the Journal of Pharmaceutical Sciences in Per's honor.


Assuntos
Pesquisa Farmacêutica , Farmácia , História do Século XX , Humanos , Mentores
11.
Sci Rep ; 9(1): 5850, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971754

RESUMO

The clinical impact of drug-drug interactions based on time-dependent inhibition of cytochrome P450 (CYP) 3A4 has often been overpredicted, likely due to use of improper inhibitor concentration estimates at the enzyme. Here, we investigated if use of cytosolic unbound inhibitor concentrations could improve predictions of time-dependent drug-drug interactions. First, we assessed the inhibitory effects of ten time-dependent CYP3A inhibitors on midazolam 1'-hydroxylation in human liver microsomes. Then, using a novel method, we determined the cytosolic bioavailability of the inhibitors in human hepatocytes, and used the obtained values to calculate their concentrations at the active site of the enzyme, i.e. the cytosolic unbound concentrations. Finally, we combined the data in mechanistic static predictions, by considering different combinations of inhibitor concentrations in intestine and liver, including hepatic concentrations corrected for cytosolic bioavailability. The results were then compared to clinical data. Compared to no correction, correction for cytosolic bioavailability resulted in higher accuracy and precision, generally in line with those obtained by more demanding modelling. The best predictions were obtained when the inhibition of hepatic CYP3A was based on unbound maximal inhibitor concentrations corrected for cytosolic bioavailability. Our findings suggest that cytosolic unbound inhibitor concentrations improves predictions of time-dependent drug-drug interactions for CYP3A.


Assuntos
Citosol/química , Interações Medicamentosas/fisiologia , Preparações Farmacêuticas/metabolismo , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/metabolismo , Citosol/metabolismo , Humanos , Cetolídeos/química , Cetolídeos/metabolismo , Cinética , Microssomos Hepáticos/química , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Preparações Farmacêuticas/química , Piperazinas/química , Piperazinas/metabolismo , Triazóis/química , Triazóis/metabolismo
13.
Sci Rep ; 8(1): 1925, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386590

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne hemorrhagic fever virus affecting both humans and animals with severe morbidity and mortality and is classified as a potential bioterror agent due to the possible aerosol transmission. At present there is no human vaccine or antiviral therapy available. Thus, there is a great need to develop new antivirals for treatment of RVFV infections. Benzavir-2 was previously identified as potent inhibitor of human adenovirus, herpes simplex virus type 1, and type 2. Here we assess the anti-RVFV activity of benzavir-2 together with four structural analogs and determine pre-clinical pharmacokinetic parameters of benzavir-2. In vitro, benzavir-2 efficiently inhibited RVFV infection, viral RNA production and production of progeny viruses. In vitro, benzavir-2 displayed satisfactory solubility, good permeability and metabolic stability. In mice, benzavir-2 displayed oral bioavailability with adequate maximum serum concentration. Oral administration of benzavir-2 formulated in peanut butter pellets gave high systemic exposure without any observed toxicity in mice. To summarize, our data demonstrated potent anti-RVFV activity of benzavir-2 in vitro together with a promising pre-clinical pharmacokinetic profile. This data support further exploration of the antiviral activity of benzavir-2 in in vivo efficacy models that may lead to further drug development for human use.


Assuntos
Antivirais/farmacologia , Antivirais/farmacocinética , Benzoatos/farmacologia , Benzoatos/farmacocinética , Vírus da Febre do Vale do Rift/fisiologia , Células A549 , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/química , Benzoatos/administração & dosagem , Benzoatos/química , Disponibilidade Biológica , Feminino , Humanos , Camundongos Endogâmicos BALB C , RNA Viral/genética , Febre do Vale de Rift/tratamento farmacológico , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/efeitos dos fármacos
14.
Nat Commun ; 9(1): 250, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343827

RESUMO

With a diverse network of substrates, NUDIX hydrolases have emerged as a key family of nucleotide-metabolizing enzymes. NUDT5 (also called NUDIX5) has been implicated in ADP-ribose and 8-oxo-guanine metabolism and was recently identified as a rheostat of hormone-dependent gene regulation and proliferation in breast cancer cells. Here, we further elucidate the physiological relevance of known NUDT5 substrates and underscore the biological requirement for NUDT5 in gene regulation and proliferation of breast cancer cells. We confirm the involvement of NUDT5 in ADP-ribose metabolism and dissociate a relationship to oxidized nucleotide sanitation. Furthermore, we identify potent NUDT5 inhibitors, which are optimized to promote maximal NUDT5 cellular target engagement by CETSA. Lead compound, TH5427, blocks progestin-dependent, PAR-derived nuclear ATP synthesis and subsequent chromatin remodeling, gene regulation and proliferation in breast cancer cells. We herein present TH5427 as a promising, targeted inhibitor that can be used to further study NUDT5 activity and ADP-ribose metabolism.


Assuntos
Inibidores Enzimáticos/farmacologia , Progestinas/metabolismo , Pirofosfatases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Adenosina Difosfato Ribose/metabolismo , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Feminino , Células HL-60 , Humanos , Estrutura Molecular , Pirofosfatases/genética , Pirofosfatases/metabolismo , Interferência de RNA , Especificidade por Substrato
15.
Science ; 362(6416): 834-839, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30442810

RESUMO

The onset of inflammation is associated with reactive oxygen species and oxidative damage to macromolecules like 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA. Because 8-oxoguanine DNA glycosylase 1 (OGG1) binds 8-oxoG and because Ogg1-deficient mice are resistant to acute and systemic inflammation, we hypothesized that OGG1 inhibition may represent a strategy for the prevention and treatment of inflammation. We developed TH5487, a selective active-site inhibitor of OGG1, which hampers OGG1 binding to and repair of 8-oxoG and which is well tolerated by mice. TH5487 prevents tumor necrosis factor-α-induced OGG1-DNA interactions at guanine-rich promoters of proinflammatory genes. This, in turn, decreases DNA occupancy of nuclear factor κB and proinflammatory gene expression, resulting in decreased immune cell recruitment to mouse lungs. Thus, we present a proof of concept that targeting oxidative DNA repair can alleviate inflammatory conditions in vivo.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Benzimidazóis/farmacologia , DNA Glicosilases/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Piperidinas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Benzimidazóis/uso terapêutico , DNA Glicosilases/metabolismo , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Técnicas de Inativação de Genes , Guanina/análogos & derivados , Guanina/antagonistas & inibidores , Guanina/metabolismo , Células HEK293 , Humanos , Inflamação/genética , Células Jurkat , Camundongos , Camundongos Mutantes , NF-kappa B/genética , NF-kappa B/metabolismo , Piperidinas/uso terapêutico , Regiões Promotoras Genéticas , Fator de Necrose Tumoral alfa/farmacologia
16.
Toxicology ; 235(1-2): 27-38, 2007 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-17434249

RESUMO

Liver microsome and hepatocyte-mediated biotransformation of three oral antileishmanial 2-substituted quinolines were investigated. One quinoline contains an n-propyl group (1) and the other a propenyl chain functionalized at the gamma position either by a nitrile (2) or an alcohol (3). The different isoforms of rat cytochrome P450 responsible for biotransformation of 1 were also investigated. Compounds 2 and 3 mainly reacted with glutathione, preventing further metabolism. Compound 3 however, the reaction being reversible, could be released from glutathione and take alternative reaction pathways. Microsomal incubations of 1 mainly led to hydroxylation of the side chain, involving many cytochromes, predominantly CYP2B1, CYP2A6 and CYP1A1 (at more than 80%). In contrary, minor metabolites hydroxylated on the quinoline ring involved a few cytochromes. The hydroxylated products of 1 were conjugated with glucuronic acid in rat hepatocyte incubations.


Assuntos
Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Leishmania/efeitos dos fármacos , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Quinolinas/metabolismo , Tripanossomicidas/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biotransformação , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP2A6 , Citocromo P-450 CYP2B1/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Estabilidade de Medicamentos , Glucuronídeos/metabolismo , Glutationa/metabolismo , Meia-Vida , Hepatócitos/enzimologia , Humanos , Hidroxilação , Técnicas In Vitro , Cinética , Masculino , Microssomos Hepáticos/enzimologia , Oxigenases de Função Mista/metabolismo , Estrutura Molecular , Quinolinas/química , Quinolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Tripanossomicidas/química , Tripanossomicidas/farmacologia
17.
Medchemcomm ; 8(7): 1553-1560, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108867

RESUMO

In this study, we provide insight into the metabolic profile of a series of piperazin-1-ylpyridazines suffering from rapid in vitro intrinsic clearance in a metabolic stability assay using liver microsomes (e.g. compound 1 MLM/HLM t1/2 = 2/3 min). Aided by empirical metabolite identification and computational predictive models, we designed the structural modifications required to improve in vitro intrinsic clearance by more than 50-fold (e.g. compound 29 MLM/HLM t1/2 = 113/105 min).

18.
J Med Chem ; 60(5): 2148-2154, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28145708

RESUMO

The dCTP pyrophosphatase 1 (dCTPase) is involved in the regulation of the cellular dNTP pool and has been linked to cancer progression. Here we report on the discovery of a series of 3,6-disubstituted triazolothiadiazoles as potent dCTPase inhibitors. Compounds 16 and 18 display good correlation between enzymatic inhibition and target engagement, together with efficacy in a cellular synergy model, deeming them as a promising starting point for hit-to-lead development.


Assuntos
Inibidores Enzimáticos/farmacologia , Pirofosfatases/antagonistas & inibidores , Tiadiazóis/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular
19.
J Med Chem ; 60(10): 4279-4292, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28508636

RESUMO

The dCTP pyrophosphatase 1 (dCTPase) is a nucleotide pool "housekeeping" enzyme responsible for the catabolism of canonical and noncanonical nucleoside triphosphates (dNTPs) and has been associated with cancer progression and cancer cell stemness. We have identified a series of piperazin-1-ylpyridazines as a new class of potent dCTPase inhibitors. Lead compounds increase dCTPase thermal and protease stability, display outstanding selectivity over related enzymes and synergize with a cytidine analogue against leukemic cells. This new class of dCTPase inhibitors lays the first stone toward the development of drug-like probes for the dCTPase enzyme.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Piridazinas/química , Piridazinas/farmacologia , Pirofosfatases/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia/tratamento farmacológico , Leucemia/enzimologia , Simulação de Acoplamento Molecular , Pirofosfatases/metabolismo
20.
J Pharm Biomed Anal ; 40(5): 1121-30, 2006 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-16307862

RESUMO

An important step in the drug development process is identification of enzymes responsible for metabolism of drug candidates and determination of enzyme kinetic parameters. These data are used to increase understanding of the pharmacokinetics and possible metabolic-based drug interactions of drug candidates. The aim of the present study was to characterize the cytochrome P450 enzymes and enzyme kinetic parameters for metabolism of BVT.2938 [1-(3-{2-[(2-ethoxy-3-pyridinyl)oxy]ethoxy}-2-pyrazinyl)-2(R)-methylpiperazine], a potent and selective 5HT2c-receptor agonist. The enzyme kinetic parameters were determined for formation of three main metabolites of BVT.2938 using human liver microsomes and expressed cytochrome P450 (CYP) isoforms. The major metabolite was formed by hydroxylation of the pyridine ring (CL(int)=27 microl/mgmin), and was catalysed by both CYP2D6*1 and CYP1A1, with K(m) values corresponding to 1.4 and 2.7 microM, respectively. The results from enzyme kinetic studies were confirmed by incubation of BVT.2938 in the presence of the chemical inhibitor of CYP2D6*1, quinidine. Quinidine inhibited the formation of the major metabolite by approximately 90%. Additionally, studies with recombinant expressed CYP isoforms from rat indicated that formation of the major metabolite of BVT.2938 was catalysed by CYP2D2. This result was further confirmed by experiments with liver slices from different rat strains, where the formation of the metabolite correlated with phenotype of CYP2D2 isoform (Sprague-Dawley male, extensive; Dark Agouti male, intermediate; Dark Agouti female, poor metabolizer). The present study showed that the major metabolite of BVT.2938 is formed by hydroxylation of the pyridine ring and catalysed by CYP2D6*1. CYP1A1 is also involved in this reaction and its role in extra-hepatic metabolism of BVT.2938 might be significant.


Assuntos
Sistema Enzimático do Citocromo P-450/análise , Animais , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Técnicas In Vitro , Isoenzimas/análise , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Cinética , Masculino , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Preparações Farmacêuticas/metabolismo , Piperazinas/análise , Pirazinas/análise , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA