Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Biochem ; 687: 115429, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38113981

RESUMO

Microcystin-producing cyanobacterial blooms are a global issue threatening drinking water supplies and recreation on lakes and beaches. Direct measurement of microcystins is the only way to ensure waters have concentrations below guideline concentrations; however, analyzing water for microcystins takes several hours to days to obtain data. We tested LightDeck Diagnostics' bead beater cell lysis and two versions of the quantification system designed to give microcystin concentrations within 20 min and compared it to the standard freeze-thaw cycle lysis method and ELISA quantification. The bead beater lyser was only 30 % effective at extracting microcystins compared to freeze-thaw. When considering freeze-thaw samples analyzed in 2021, there was good agreement between ELISA and LightDeck version 2 (n = 152; R2 = 0.868), but the LightDeck slightly underestimated microcystins (slope of 0.862). However, we found poor relationships between LightDeck version 2 and ELISA in 2022 (n = 49, slopes 0.60 to 1.6; R2 < 0.6) and LightDeck version 1 (slope = 1.77 but also a high number of less than quantifiable concentrations). After the quantification issues are resolved, combining the LightDeck system with an already-proven rapid lysis method (such as microwaving) will allow beach managers and water treatment operators to make quicker, well-informed decisions.


Assuntos
Técnicas Biossensoriais , Cianobactérias , Microcistinas/análise , Microcistinas/metabolismo , Proliferação Nociva de Algas , Lagos/análise
2.
Harmful Algae ; 136: 102656, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876531

RESUMO

Sandusky Bay is the drowned mouth of the Sandusky River in the southwestern portion of Lake Erie. The bay is a popular recreation location and a regional source for drinking water. Like the western basin of Lake Erie, Sandusky Bay is known for being host to summer cyanobacterial harmful algal blooms (cHABs) year after year, fueled by runoff from the predominantly agricultural watershed and internal loading of legacy nutrients (primarily phosphorus). Since at least 2003, Sandusky Bay has harbored a microcystin-producing bloom of Planktothrix agardhii, a species of filamentous cyanobacteria that thrives in low light conditions. Long-term sampling (2003-2018) of Sandusky Bay revealed regular Planktothrix-dominated blooms during the summer months, but in recent years (2019-2022), 16S rRNA gene community profiling revealed that Planktothrix has largely disappeared. From 2017-2022, microcystin decreased well below the World Health Organization (WHO) guidelines. Spring TN:TP ratios increased in years following dam removal, yet there were no statistically significant shifts in other physicochemical variables, such as water temperature and water clarity. With the exception of the high bloom of Planktothrix in 2018, there was no statistical difference in chlorophyll during all other years. Concurrent with the disappearance of Planktothrix, Cyanobium spp. have become the dominant cyanobacterial group. The appearance of other potential toxigenic genera (i.e., Aphanizomenon, Dolichospermum, Cylindrospermopsis) may motivate monitoring of new toxins of concern in Sandusky Bay. Here, we document the regime shift in the cyanobacterial community and propose evidence supporting the hypothesis that the decline in the Planktothrix bloom was linked to the removal of an upstream dam on the Sandusky River.


Assuntos
Baías , Proliferação Nociva de Algas , Fitoplâncton , Planktothrix , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Baías/microbiologia , Microcistinas/metabolismo , Microcistinas/análise , Monitoramento Ambiental , Estações do Ano , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/fisiologia , Cianobactérias/genética
3.
Environ Microbiol Rep ; 16(3): e13297, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885952

RESUMO

The Winam Gulf (Kenya) is frequently impaired by cyanobacterial harmful algal blooms (cHABs) due to inadequate wastewater treatment and excess agricultural nutrient input. While phytoplankton in Lake Victoria have been characterized using morphological criteria, our aim is to identify potential toxin-producing cyanobacteria using molecular approaches. The Gulf was sampled over two successive summer seasons, and 16S and 18S ribosomal RNA gene sequencing was performed. Additionally, key genes involved in production of cyanotoxins were examined by quantitative PCR. Bacterial communities were spatially variable, forming distinct clusters in line with regions of the Gulf. Taxa associated with diazotrophy were dominant near Homa Bay. On the eastern side, samples exhibited elevated cyrA abundances, indicating genetic capability of cylindrospermopsin synthesis. Indeed, near the Nyando River mouth in 2022, cyrA exceeded 10 million copies L-1 where there were more than 6000 Cylindrospermopsis spp. cells mL-1. In contrast, the southwestern region had elevated mcyE gene (microcystin synthesis) detections near Homa Bay where Microcystis and Dolichospermum spp. were observed. These findings show that within a relatively small embayment, composition and toxin synthesis potential of cHABs can vary dramatically. This underscores the need for multifaceted management approaches and frequent cyanotoxin monitoring to reduce human health impacts.


Assuntos
Toxinas Bacterianas , Cianobactérias , Proliferação Nociva de Algas , Lagos , Lagos/microbiologia , Lagos/química , Quênia , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Toxinas Bacterianas/genética , Microcistinas/genética , RNA Ribossômico 16S/genética , Microbiota , Fitoplâncton/genética , Toxinas de Cianobactérias , Alcaloides/análise , Alcaloides/metabolismo , RNA Ribossômico 18S/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA