Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mob DNA ; 13(1): 26, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401307

RESUMO

BACKGROUND: Transposable elements are ubiquitous and play a fundamental role in shaping genomes during evolution. Since excessive transposition can be mutagenic, mechanisms exist in the cells to keep these mobile elements under control. Although many cellular factors regulating the mobility of the retrovirus-like transposon Ty1 in Saccharomyces cerevisiae have been identified in genetic screens, only very few of them interact physically with Ty1 integrase (IN). RESULTS: Here, we perform a proteomic screen to establish Ty1 IN interactome. Among the 265 potential interacting partners, we focus our study on the conserved CK2 kinase. We confirm the interaction between IN and CK2, demonstrate that IN is a substrate of CK2 in vitro and identify the modified residues. We find that Ty1 IN is phosphorylated in vivo and that these modifications are dependent in part on CK2. No significant change in Ty1 retromobility could be observed when we introduce phospho-ablative mutations that prevent IN phosphorylation by CK2 in vitro. However, the absence of CK2 holoenzyme results in a strong stimulation of Ty1 retrotransposition, characterized by an increase in Ty1 mRNA and protein levels and a high accumulation of cDNA. CONCLUSION: Our study shows that Ty1 IN is phosphorylated, as observed for retroviral INs and highlights an important role of CK2 in the regulation of Ty1 retrotransposition. In addition, the proteomic approach enabled the identification of many new Ty1 IN interacting partners, whose potential role in the control of Ty1 mobility will be interesting to study.

2.
Methods Enzymol ; 612: 197-223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30502942

RESUMO

Transposable elements (TEs) are present in virtually all organisms. TE integration into genomes contributes to their structure and evolution, but can also be harmful in some cases. Deciphering where and how TE integration is targeted is fundamental to understand their intricate relationship with their host and explore the outcome of TE mobility on genome evolution and cell fitness. In general, TEs display integration site preference, which differs between elements. High-throughput mapping of de novo insertions by deep sequencing has recently allowed identifying genome-wide integration preferences of several TEs. These studies have provided invaluable clues to address the molecular determinants of integration site preference. Here, we provide a step-by-step methodology to generate massive de novo insertion events and prepare a library of genomic DNA for next-generation sequencing. We also describe a primary bioinformatic procedure to map these insertions in the genome. The whole procedure comes from our recent work on the integration of Ty1 in Saccharomyces cerevisiae, but could be easily adapted to the study of other TEs.


Assuntos
Genoma Fúngico/genética , Retroelementos/genética , Mapeamento Cromossômico , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Plasmídeos/genética , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA