Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 93(8): 3876-3882, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33596378

RESUMO

Here, we present a study of how liposomes are loaded and release their contents during their electrochemical detection. We loaded 200 nm liposomes with a redox mediator, ferrocyanide, and used amperometry to detect their collision on a carbon-fiber microelectrode (CFE). We found that we could control the favorability of their electroporation process and the amount of ferrocyanide released by modifying the osmolarity of the buffer in which the liposomes were suspended. Interestingly, we observed that the quantity of the released ferrocyanide varied significantly with buffer osmolarity in a nonmonotonic fashion. Using stimulated Raman scattering (SRS), we confirmed that this behavior was partly explained by fluctuations in the intravesicular redox concentration in response to osmotic pressure. To our surprise, the redox concentration obtained from SRS was much greater than that obtained from amperometry, implying that liposomes may release only a fraction of their contents during electroporation. Consistent with this hypothesis, we observed barrages of electrochemical signals that far exceeded the frequency predicted by Poisson statistics, suggesting that single liposomes can collide with the CFE and electroporate multiple times. With this study, we have resolved some outstanding questions surrounding electrochemical detection of liposomes while extending observations from giant unilamellar vesicles to 200 nm liposomes with high temporal resolution and sensitivity.

2.
Anal Chem ; 92(16): 11318-11324, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32692154

RESUMO

Here we report the development and characterization of a high throughput sensing device for single liposome detection. The device incorporates a quartz nanopipette positioned near a carbon-fiber microelectrode (CFE). Liposomes (∼200 nm diameter) loaded with Fe(CN)64- are driven out of the nanopipette orifice where they are sensed as a transient decrease in the measured ionic current (resistive-pulse analysis). Simultaneously, a redox signal is collected at the CFE due to the release of internalized redox molecules from translocating liposomes to the CFE surface. Interestingly, we observed that the redox signals arise coincidently with resistive-pulses, suggesting that leakage of liposome contents occurs during translocation. Further investigation suggested that liposome disruption occurs at the nanopore orifice and is not dependent on the nanopore electric field. The probability of this disruption appears to rely on the velocity of fluid flow in the nanopore as well as the nanopore geometry. The high-throughput nature of our technique may prove useful for rapid analysis of liposomal drug formulations or rapid, robust, direct measurement of neurotransmitter concentration in isolated vesicles from neurons and neuroendocrine cells.


Assuntos
Técnicas Eletroquímicas/métodos , Lipossomos/análise , Nanoporos , Fibra de Carbono/química , Técnicas Eletroquímicas/instrumentação , Ferrocianetos/química , Lipossomos/química , Microeletrodos , Oxirredução , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química
3.
Anal Chem ; 90(16): 10049-10055, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30047726

RESUMO

Exocytosis is an ultrafast cellular process which facilitates neuron-neuron communication in the brain. Microelectrode electrochemistry has been an essential tool for measuring fast exocytosis events with high temporal resolution and high sensitivity. Due to carbon fiber's irreproducible and inhomogeneous surface conditions, however, it is often desirable to develop simple and reproducible modification schemes to enhance a microelectrode's analytical performance for single-cell analysis. Here we present carbon-fiber microelectrodes (CFEs) modified with a thin film of electrodeposited gold for the detection of exocytosis from rat pheochromocytoma cells (PC12), a model cell line for neurosecretion. These new probes are made by a novel voltage-pulsing deposition procedure and demonstrate improved electron-transfer characteristics for catecholamine oxidation, and their fabrication is tractable for many different probe designs. When we applied the probes to the detection of catecholamine release, we found that they outperformed unmodified CFEs. Further, the improved performance was conserved at cells incubated with L-DOPA (l-3,4-dihydroxyphenylalanine), a precursor to dopamine that increases the quantal size of the release events. Future use of this method may allow nanoelectrodes to be modified for highly sensitive detection of exocytosis from chemical synapses.


Assuntos
Fibra de Carbono/química , Dopamina/análise , Técnicas Eletroquímicas/métodos , Ouro/química , Animais , Dopamina/metabolismo , Técnicas Eletroquímicas/instrumentação , Exocitose/fisiologia , Levodopa/metabolismo , Microeletrodos , Células PC12 , Ratos
4.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38168182

RESUMO

Biological aging can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function. Aging is a complex and dynamic process which influences distinct cell types in a myriad of ways. The cellular architecture of the mammalian brain is heterogeneous and diverse, making it challenging to identify precise areas and cell types of the brain that are more susceptible to aging than others. Here, we present a high-resolution single-cell RNA sequencing dataset containing ~1.2 million high-quality single-cell transcriptomic profiles of brain cells from young adult and aged mice across both sexes, including areas spanning the forebrain, midbrain, and hindbrain. We find age-associated gene expression signatures across nearly all 130+ neuronal and non-neuronal cell subclasses we identified. We detect the greatest gene expression changes in non-neuronal cell types, suggesting that different cell types in the brain vary in their susceptibility to aging. We identify specific, age-enriched clusters within specific glial, vascular, and immune cell types from both cortical and subcortical regions of the brain, and specific gene expression changes associated with cell senescence, inflammation, decrease in new myelination, and decreased vasculature integrity. We also identify genes with expression changes across multiple cell subclasses, pointing to certain mechanisms of aging that may occur across wide regions or broad cell types of the brain. Finally, we discover the greatest gene expression changes in cell types localized to the third ventricle of the hypothalamus, including tanycytes, ependymal cells, and Tbx3+ neurons found in the arcuate nucleus that are part of the neuronal circuits regulating food intake and energy homeostasis. These findings suggest that the area surrounding the third ventricle in the hypothalamus may be a hub for aging in the mouse brain. Overall, we reveal a dynamic landscape of cell-type-specific transcriptomic changes in the brain associated with normal aging that will serve as a foundation for the investigation of functional changes in the aging process and the interaction of aging and diseases.

5.
J Electroanal Chem (Lausanne) ; 833: 181-188, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31447621

RESUMO

We report the use of laser-pulled quartz nanopipettes as a new platform for microfabricated nanopores. A quartz nanopipette is prepared on a laser puller and sealed closed prior to focused-ion beam (FIB) milling. A quartz nanopore can then be FIB-milled into the side walls of the sealed pipette and used to analyze single nanoparticles. This method is fast, reproducible and creates nearly cylindrical nanopores in ultrathin quartz walls with controllable diameter down to 66 nm. Both pore size and wall thickness can be readily controlled in the FIB milling process by adjusting milling parameters and milling at different locations along the pipette walls. FIB-milled quartz nanopores combine the advantages of the pipette pores and silicon chip-based membrane pores into one device while avoiding many of the challenges of two popular nanopore devices. First, they can be used as a handheld probe device like a quartz pipette. Second, the use of an ultrathin quartz membrane gives them superior electric property enabling low noise recording at a higher bandwidth and a highly focused sensing zone located at a farther distance away from the highly restricted tip region. The inner and outer diameters of the resulting pore can be precisely measured using scanning electron microscopy (SEM). As an application, FIB-milled side nanopores are used to study translocation of polystyrene nanoparticles. In addition to studying the dependence of translocation time on the pore length, we demonstrate detection of nanoparticles in parallel nanopores of different lengths and use finite-element simulation to confirm the identity of the two resulting populations. Our results show that FIB-milled side nanopores are a useful platform for future analytical applications like studying nanoparticle translocation dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA