Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 23(5): 670-679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413809

RESUMO

Fast charging is a critical concern for the next generation of electrochemical energy storage devices, driving extensive research on new electrode materials for electrochemical capacitors and micro-supercapacitors. Here we introduce a significant advance in producing thick ruthenium nitride pseudocapacitive films fabricated using a sputter deposition method. These films deliver over 0.8 F cm-2 (~500 F cm-3) with a time constant below 6 s. By utilizing an original electrochemical oxidation process, the volumetric capacitance doubles (1,200 F cm-3) without sacrificing cycling stability. This enables an extended operating potential window up to 0.85 V versus Hg/HgO, resulting in a boost to 3.2 F cm-2 (3,200 F cm-3). Operando X-ray absorption spectroscopy and transmission electron microscopy analyses reveal novel insights into the electrochemical oxidation process. The charge storage mechanism takes advantage of the high electrical conductivity and the morphology of cubic ruthenium nitride and Ru phases in the feather-like core, leading to high electrical conductivity in combination with high capacity. Accordingly, we have developed an analysis that relates capacity to time constant as a means of identifying materials capable of retaining high capacity at high charge/discharge rates.

2.
Small ; : e2402607, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860732

RESUMO

The demand for high-performance energy storage devices to power Internet of Things applications has driven intensive research on micro-supercapacitors (MSCs). In this study, RuN films made by magnetron sputtering as an efficient electrode material for MSCs are investigated. The sputtering parameters are carefully studied in order to maximize film porosity while maintaining high electrical conductivity, enabling a fast charging process. Using a combination of advanced techniques, the relationships among the morphology, structure, and electrochemical properties of the RuN films are investigated. The films are shown to have a complex structure containing a mixture of crystallized Ru and RuN phases with an amorphous oxide layer. The combination of high electrical conductivity and pseudocapacitive charge storage properties enabled a 16 µm-thick RuN film to achieve a capacitance value of 0.8 F cm-2 in 1 m KOH with ultra-high rate capability.

3.
Inorg Chem ; 58(9): 6431-6444, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31009207

RESUMO

CuFeO2, the structure prototype of the delafossite family, has received renewed interest in recent years. Thermodynamic modeling and several experimental Cu-Fe-O system investigations did not focus specifically on the possible nonstoichiometry of this compound, which is, nevertheless, a very important optimization factor for its physicochemical properties. In this work, through a complete set of analytical and thermostructural techniques from 50 to 1100 °C, a fine reinvestigation of some specific regions of the Cu-Fe-O phase diagram under air was carried out to clarify discrepancies concerning the delafossite CuFeO2 stability region as well as the eutectic composition and temperature for the reaction L = CuFeO2 + Cu2O. Differential thermal analysis and Tammann's triangle method were used to measure the liquidus temperature at 1050 ± 2 °C with a eutectic composition at Fe/(Cu + Fe) = 0.105 mol %. The quantification of all of the present phases during heating and cooling using Rietveld refinement of the high-temperature X-ray diffraction patterns coupled with thermogravimetric and differential thermal analyses revealed the mechanism of formation of delafossite CuFeO2 from stable CuO and spinel phases at 1022 ± 2 °C and its incongruent decomposition into liquid and spinel phases at 1070 ± 2 °C. For the first time, a cationic off-stoichiometry of cuprous ferrite CuFe1- yO2-δ was unambiguous, as evidenced by two independent sets of experiments: (1) Electron probe microanalysis evidenced homogeneous micronic CuFe1- yO2-δ areas with a maximum y value of 0.12 [i.e., Fe/(Cu + Fe) = 0.47] on Cu/Fe gradient generated by diffusion from a perfect spark plasma sintering pristine interface. Micro-Raman provided structural proof of the existence of the delafossite structure in these areas. (2) Standard Cu additions from the stoichiometric compound CuFeO2 coupled with high-temperature X-ray diffraction corroborated the possibility of obtaining a pure Cu-excess delafossite phase with y = 0.12. No evidence of an Fe-rich delafossite was found, and complementary analysis under a neutral atmosphere shows narrow lattice parameter variation with an increase of Cu in the delafossite structure. The consistent new data set is summarized in an updated experimental Cu-Fe-O phase diagram. These results provide an improved understanding of the stability region and possible nonstoichiometry value of the CuFe1- yO2-δ delafossite in the Cu-Fe-O phase diagram, enabling its optimization for specific applications.

4.
Sensors (Basel) ; 17(5)2017 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481258

RESUMO

The integration of a 50-nm-thick layer of an innovative sensitive material on microsensors has been developed based on silicon micro-hotplates. In this study, integration of ZnO:Ga via radio-frequency (RF) sputtering has been successfully combined with a low cost and reliable stencil mask technique to obtain repeatable sensing layers on top of interdigitated electrodes. The variation of the resistance of this n-type Ga-doped ZnO has been measured under sub-ppm traces (500 ppb) of acetaldehyde (C2H4O). Thanks to the microheater designed into a thin membrane, the generation of very rapid temperature variations (from room temperature to 550 °C in 25 ms) is possible, and a rapid cycled pulsed-temperature operating mode can be applied to the sensor. This approach reveals a strong improvement of sensing performances with a huge sensitivity between 10 and 1000, depending on the working pulsed-temperature level.

5.
Sensors (Basel) ; 17(6)2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28621738

RESUMO

P-type semiconducting copper oxide (CuO) thin films deposited by radio-frequency (RF) sputtering were integrated onto microsensors using classical photolithography technologies. The integration of the 50-nm-thick layer could be successfully carried out using the lift-off process. The microsensors were tested with variable thermal sequences under carbon monoxide (CO), ammonia (NH3), acetaldehyde (C2H4O), and nitrogen dioxide (NO2) which are among the main pollutant gases measured by metal-oxide (MOS) gas sensors for air quality control systems in automotive cabins. Because the microheaters were designed on a membrane, it was then possible to generate very rapid temperature variations (from room temperature to 550 °C in only 50 ms) and a rapid temperature cycling mode could be applied. This measurement mode allowed a significant improvement of the sensor response under 2 and 5 ppm of acetaldehyde.

6.
ChemSusChem ; 15(8): e202200169, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35230739

RESUMO

Large scale development of the 2D transition metal di-chalcogenides (TMDC) relies on landmark improvement in performance, which could emerge from nanostructuration. Using p-WS2 nanoflakes with different degrees of exfoliation and fracturing, perspectives were provided to develop high-surface-area 2D p-WS2 films for the photocatalytic hydrogen generation. The critical role of inter-nanoflakes contacts within high-surface-area 2D films was demonstrated, highlighting the benefit of plane/plane versus edge/plane contacts. Evidence of the high density of surface states displayed by these 2D films was provided through electrochemical measurements. In addition to operating as recombination centers, the surface states were shown to give rise to deleterious Fermi-level pinning (FLP), which dramatically decreased the efficiency of charge carrier separation. Lastly, promising strategies yielding FLP suppression via surface states modification were proposed. In particular, use of a multifunctional ultrathin film displaying healing, catalytic, and n-type semiconduction properties was shown to greatly enhance charge carrier separation and transport to the photo-electrode/electrolyte interface. When the 2D photoelectrodes were fabricated with the above prerequisites (i. e., a high proportion of plane/plane contacts and a successful surface states chemical modification), a photocurrent up to 4.5 mA cm-2 was achieved for the first time on 2D p-WS2 photocathodes for hydrogen generation.

7.
Nanoscale ; 10(35): 16521-16530, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-29931009

RESUMO

The visualization of the microstructure change and of the depth of lithium transport inside a monolithic ElectroChromic Device (ECD) is realized using an innovative combined approach of Focused Ion Beam (FIB), Secondary Ion Mass Spectrometry (SIMS) and Glow Discharge Optical Emission Spectroscopy (GDOES). The electrochemical and optical properties of the all-thin-film inorganic ECD glass/ITO/WO3/LiTaO3/NiO/ITO, deposited by magnetron sputtering, are measured by cycling voltammetry and in situ transmittance analysis up to 11 270 cycles. A significant degradation corresponding to a decrease in the capacity of 71% after 2500 cycles and of 94% after 11 270 cycles is reported. The depth resolved microstructure evolution within the device, investigated by cross-sectional cutting with FIB, points out a progressive densification of the NiO layer upon cycling. The existence of irreversible Li ion trapping in NiO is illustrated through the comparison of the compositional distribution of the device after various cycles 0, 100, 1000, 5000 and 11 270. SIMS and GDOES depth profiles confirm an increase in the trapped Li content in NiO as the number of cycles increases. Therefore, the combination of lithium trapping and apparent morphological densification evolution in NiO is believed to account for the degradation of the ECD properties upon long term cycling of the ECD.

8.
Nanomaterials (Basel) ; 7(11)2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084146

RESUMO

The authors wish to make the following correction to this paper [1]. In Equation (8), logarithm (ln) term is missing[...].

9.
Nanomaterials (Basel) ; 7(7)2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28654011

RESUMO

P-type Mg doped CuCrO2 thin films have been deposited on fused silica substrates by Radio-Frequency (RF) magnetron sputtering. The as-deposited CuCrO2:Mg thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum to obtain the delafossite phase. The annealed samples exhibit 3R delafossite structure. Electrical conductivity σ and Seebeck coefficient S of all annealed films have been measured from 40 to 220 °C. The optimized properties have been obtained for CuCrO2:Mg thin film annealed at 550 °C. At a measurement temperature of 40 °C, this sample exhibited the highest electrical conductivity of 0.60 S·cm-1 with a Seebeck coefficient of +329 µV·K-1. The calculated power factor (PF = σS²) was 6 µW·m-1·K-2 at 40 °C and due to the constant Seebeck coefficient and the increasing electrical conductivity with measurement temperature, it reached 38 µW·m-1·K-2 at 220 °C. Moreover, according to measurement of the Seebeck coefficient and electrical conductivity in temperature, we confirmed that CuCrO2:Mg exhibits hopping conduction and degenerates semiconductor behavior. Carrier concentration, Fermi level, and hole effective mass have been discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA