Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 41(30): 6468-6483, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34103361

RESUMO

Central pattern generators (CPGs), specialized oscillatory neuronal networks controlling rhythmic motor behaviors such as breathing and locomotion, must adjust their patterns of activity to a variable environment and changing behavioral goals. Neuromodulation adjusts these patterns by orchestrating changes in multiple ionic currents. In the medicinal leech, the endogenous neuromodulator myomodulin speeds up the heartbeat CPG by reducing the electrogenic Na+/K+ pump current and increasing h-current in pairs of mutually inhibitory leech heart interneurons (HNs), which form half-center oscillators (HN HCOs). Here we investigate whether the comodulation of two currents could have advantages over a single current in the control of functional bursting patterns of a CPG. We use a conductance-based biophysical model of an HN HCO to explain the experimental effects of myomodulin. We demonstrate that, in the model, comodulation of the Na+/K+ pump current and h-current expands the range of functional bursting activity by avoiding transitions into nonfunctional regimes, such as asymmetric bursting and plateau-containing seizure-like activity. We validate the model by finding parameters that reproduce temporal bursting characteristics matching experimental recordings from HN HCOs under control, three different myomodulin concentrations, and Cs+ treated conditions. The matching cases are located along the border of an asymmetric regime away from the border with more dangerous seizure-like activity. We found a simple comodulation mechanism with an inverse relation between the pump and h-currents makes a good fit of the matching cases and comprises a general mechanism for the robust and flexible control of oscillatory neuronal networks.SIGNIFICANCE STATEMENT Rhythm-generating neuronal circuits adjust their oscillatory patterns to accommodate a changing environment through neuromodulation. In different species, chemical messengers participating in such processes may target two or more membrane currents. In medicinal leeches, the neuromodulator myomodulin speeds up the heartbeat central pattern generator by reducing Na+/K+ pump current and increasing h-current. In a computational model, we show that this comodulation expands the range of central pattern generator's functional activity by navigating the circuit between dysfunctional regimes resulting in a much wider range of cycle period. This control would not be attainable by modulating only one current, emphasizing the synergy of combined effects. Given the prevalence of h-current and Na+/K+ pump current in neurons, similar comodulation mechanisms may exist across species.


Assuntos
Geradores de Padrão Central/fisiologia , Interneurônios/fisiologia , Modelos Neurológicos , Neuropeptídeos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Sanguessugas
2.
Exp Physiol ; 106(5): 1181-1195, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749038

RESUMO

NEW FINDINGS: Cardio-ventilatory coupling refers to the onset of inspiration occurring at a preferential latency following the last heartbeat (HB) in expiration. According to the cardiac-trigger hypothesis, the pulse pressure initiates an inspiration via baroreceptor activation. However, the central neural substrate mediating this coupling remains undefined. Using a combination of animal data, human data and mathematical modelling, this study tests the hypothesis that the HB, by way of pulsatile baroreflex activation, controls the initiation of inspiration that occurs through a rapid neural activation loop from the carotid baroreceptors to Bötzinger complex expiratory neurons. ABSTRACT: Cardio-ventilatory coupling refers to a heartbeat (HB) occurring at a preferred latency prior to the next breath. We hypothesized that the pressure pulse generated by a HB activates baroreceptors that modulate brainstem expiratory neuronal activity and delay the initiation of inspiration. In supine male subjects, we recorded ventilation, electrocardiogram and blood pressure during 20-min epochs of baseline, slow-deep breathing and recovery. In in situ rodent preparations, we recorded brainstem activity in response to pulses of perfusion pressure. We applied a well-established respiratory network model to interpret these data. In humans, the latency between a HB and onset of inspiration was consistent across different breathing patterns. In in situ preparations, a transient pressure pulse during expiration activated a subpopulation of expiratory neurons normally active during post-inspiration, thus delaying the next inspiration. In the model, baroreceptor input to post-inspiratory neurons accounted for the effect. These studies are consistent with baroreflex activation modulating respiration through a pauci-synaptic circuit from baroreceptors to onset of inspiration.


Assuntos
Pressorreceptores , Respiração , Animais , Barorreflexo , Pressão Sanguínea , Frequência Cardíaca , Humanos , Masculino , Pressorreceptores/fisiologia
3.
J Physiol ; 598(21): 4969-4994, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32621515

RESUMO

KEY POINTS: Contraction of abdominal muscles at the end of expiration during metabolic challenges (such as hypercapnia and hypoxia) improves pulmonary ventilation. The emergence of this active expiratory pattern requires the recruitment of the expiratory oscillator located on the ventral surface of the medulla oblongata. Here we show that an inhibitory circuitry located in the Bötzinger complex is an important source of inhibitory drive to the expiratory oscillator. This circuitry, mediated by GABAergic and glycinergic synapses, provides expiratory inhibition that restrains the expiratory oscillator under resting condition and regulates the formation of abdominal expiratory activity during active expiration. By combining experimental and modelling approaches, we propose the organization and connections within the respiratory network that control the changes in the breathing pattern associated with elevated metabolic demand. ABSTRACT: The expiratory neurons of the Bötzinger complex (BötC) provide inhibitory inputs to the respiratory network, which, during eupnoea, are critically important for respiratory phase transition and duration control. Here, we investigated how the BötC neurons interact with the expiratory oscillator located in the parafacial respiratory group (pFRG) and control the abdominal activity during active expiration. Using the decerebrated, arterially perfused in situ preparations of juvenile rats, we recorded the activity of expiratory neurons and performed pharmacological manipulations of the BötC and pFRG during hypercapnia or after the exposure to short-term sustained hypoxia - conditions that generate active expiration. The experimental data were integrated in a mathematical model to gain new insights into the inhibitory connectome within the respiratory central pattern generator. Our results indicate that the BötC neurons may establish mutual connections with the pFRG, providing expiratory inhibition during the first stage of expiration and receiving excitatory inputs during late expiration. Moreover, we found that application of GABAergic and glycinergic antagonists in the BötC caused opposing effects on abdominal expiratory activity, suggesting complex inhibitory circuitry within the BötC. Using mathematical modelling, we propose that the BötC network organization and its interactions with the pFRG restrain abdominal activity under resting conditions and contribute to abdominal expiratory pattern formation during active expiration observed during hypercapnia or after the exposure to short-term sustained hypoxia.


Assuntos
Bulbo , Transmissão Sináptica , Animais , Hipercapnia , Neurônios , Ratos , Respiração
4.
PLoS Comput Biol ; 14(4): e1006148, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29698394

RESUMO

The circuit organization within the mammalian brainstem respiratory network, specifically within and between the pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes, and the roles of these circuits in respiratory pattern generation are continuously debated. We address these issues with a combination of optogenetic experiments and modeling studies. We used transgenic mice expressing channelrhodopsin-2 under the VGAT-promoter to investigate perturbations of respiratory circuit activity by site-specific photostimulation of inhibitory neurons within the pre-BötC or BötC. The stimulation effects were dependent on the intensity and phase of the photostimulation. Specifically: (1) Low intensity (≤ 1.0 mW) pulses delivered to the pre-BötC during inspiration did not terminate activity, whereas stronger stimulations (≥ 2.0 mW) terminated inspiration. (2) When the pre-BötC stimulation ended in or was applied during expiration, rebound activation of inspiration occurred after a fixed latency. (3) Relatively weak sustained stimulation (20 Hz, 0.5-2.0 mW) of pre-BötC inhibitory neurons increased respiratory frequency, while a further increase of stimulus intensity (> 3.0 mW) reduced frequency and finally (≥ 5.0 mW) terminated respiratory oscillations. (4) Single pulses (0.2-5.0 s) applied to the BötC inhibited rhythmic activity for the duration of the stimulation. (5) Sustained stimulation (20 Hz, 0.5-3.0 mW) of the BötC reduced respiratory frequency and finally led to apnea. We have revised our computational model of pre-BötC and BötC microcircuits by incorporating an additional population of post-inspiratory inhibitory neurons in the pre-BötC that interacts with other neurons in the network. This model was able to reproduce the above experimental findings as well as previously published results of optogenetic activation of pre-BötC or BötC neurons obtained by other laboratories. The proposed organization of pre-BötC and BötC circuits leads to testable predictions about their specific roles in respiratory pattern generation and provides important insights into key circuit interactions operating within brainstem respiratory networks.


Assuntos
Modelos Neurológicos , Centro Respiratório/fisiologia , Animais , Geradores de Padrão Central/fisiologia , Biologia Computacional , Simulação por Computador , Conectoma , Fenômenos Eletrofisiológicos , Camundongos , Camundongos Transgênicos , Optogenética , Estimulação Luminosa , Centro Respiratório/citologia , Fenômenos Fisiológicos Respiratórios , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L891-L909, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30188747

RESUMO

The retrotrapezoid nucleus (RTN) contains chemosensitive cells that distribute CO2-dependent excitatory drive to the respiratory network. This drive facilitates the function of the respiratory central pattern generator (rCPG) and increases sympathetic activity. It is also evidenced that during hypercapnia, the late-expiratory (late-E) oscillator in the parafacial respiratory group (pFRG) is activated and determines the emergence of active expiration. However, it remains unclear the microcircuitry responsible for the distribution of the excitatory signals to the pFRG and the rCPG in conditions of high CO2. Herein, we hypothesized that excitatory inputs from chemosensitive neurons in the RTN are necessary for the activation of late-E neurons in the pFRG. Using the decerebrated in situ rat preparation, we found that lesions of neurokinin-1 receptor-expressing neurons in the RTN region with substance P-saporin conjugate suppressed the late-E activity in abdominal nerves (AbNs) and sympathetic nerves (SNs) and attenuated the increase in phrenic nerve (PN) activity induced by hypercapnia. On the other hand, kynurenic acid (100 mM) injections in the pFRG eliminated the late-E activity in AbN and thoracic SN but did not modify PN response during hypercapnia. Iontophoretic injections of retrograde tracer into the pFRG of adult rats revealed labeled phox2b-expressing neurons within the RTN. Our findings are supported by mathematical modeling of chemosensitive and late-E populations within the RTN and pFRG regions as two separate but interacting populations in a way that the activation of the pFRG late-E neurons during hypercapnia require glutamatergic inputs from the RTN neurons that intrinsically detect changes in CO2/pH.


Assuntos
Núcleo Celular/fisiologia , Expiração/fisiologia , Neurônios/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Dióxido de Carbono/metabolismo , Núcleo Celular/metabolismo , Concentração de Íons de Hidrogênio , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Masculino , Neurônios/metabolismo , Nervo Frênico/metabolismo , Nervo Frênico/fisiopatologia , Ratos , Ratos Wistar , Receptores da Neurocinina-1/metabolismo , Sistema Nervoso Simpático/metabolismo
6.
J Neurophysiol ; 119(2): 401-412, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070631

RESUMO

Coordination of respiratory pump and valve muscle activity is essential for normal breathing. A hallmark respiratory response to hypercapnia and hypoxia is the emergence of active exhalation, characterized by abdominal muscle pumping during the late one-third of expiration (late-E phase). Late-E abdominal activity during hypercapnia has been attributed to the activation of expiratory neurons located within the parafacial respiratory group (pFRG). However, the mechanisms that control emergence of active exhalation, and its silencing in restful breathing, are not completely understood. We hypothesized that inputs from the Kölliker-Fuse nucleus (KF) control the emergence of late-E activity during hypercapnia. Previously, we reported that reversible inhibition of the KF reduced postinspiratory (post-I) motor output to laryngeal adductor muscles and brought forward the onset of hypercapnia-induced late-E abdominal activity. Here we explored the contribution of the KF for late-E abdominal recruitment during hypercapnia by pharmacologically disinhibiting the KF in in situ decerebrate arterially perfused rat preparations. These data were combined with previous results and incorporated into a computational model of the respiratory central pattern generator. Disinhibition of the KF through local parenchymal microinjections of gabazine (GABAA receptor antagonist) prolonged vagal post-I activity and inhibited late-E abdominal output during hypercapnia. In silico, we reproduced this behavior and predicted a mechanism in which the KF provides excitatory drive to post-I inhibitory neurons, which in turn inhibit late-E neurons of the pFRG. Although the exact mechanism proposed by the model requires testing, our data confirm that the KF modulates the formation of late-E abdominal activity during hypercapnia. NEW & NOTEWORTHY The pons is essential for the formation of the three-phase respiratory pattern, controlling the inspiratory-expiratory phase transition. We provide functional evidence of a novel role for the Kölliker-Fuse nucleus (KF) controlling the emergence of abdominal expiratory bursts during active expiration. A computational model of the respiratory central pattern generator predicts a possible mechanism by which the KF interacts indirectly with the parafacial respiratory group and exerts an inhibitory effect on the expiratory conditional oscillator.


Assuntos
Hipercapnia/fisiopatologia , Núcleo de Kölliker-Fuse/fisiologia , Nervos Periféricos/fisiologia , Respiração , Animais , Geradores de Padrão Central/fisiologia , Potencial Evocado Motor , Núcleo de Kölliker-Fuse/fisiopatologia , Masculino , Modelos Neurológicos , Nervos Periféricos/fisiopatologia , Ratos , Ratos Wistar , Músculos Respiratórios/inervação
7.
PLoS Comput Biol ; 9(3): e1002930, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505348

RESUMO

Flexibility in neuronal circuits has its roots in the dynamical richness of their neurons. Depending on their membrane properties single neurons can produce a plethora of activity regimes including silence, spiking and bursting. What is less appreciated is that these regimes can coexist with each other so that a transient stimulus can cause persistent change in the activity of a given neuron. Such multistability of the neuronal dynamics has been shown in a variety of neurons under different modulatory conditions. It can play either a functional role or present a substrate for dynamical diseases. We considered a database of an isolated leech heart interneuron model that can display silent, tonic spiking and bursting regimes. We analyzed only the cases of endogenous bursters producing functional half-center oscillators (HCOs). Using a one parameter (the leak conductance (g(leak)) bifurcation analysis, we extended the database to include silent regimes (stationary states) and systematically classified cases for the coexistence of silent and bursting regimes. We showed that different cases could exhibit two stable depolarized stationary states and two hyperpolarized stationary states in addition to various spiking and bursting regimes. We analyzed all cases of endogenous bursters and found that 18% of the cases were multistable, exhibiting coexistences of stationary states and bursting. Moreover, 91% of the cases exhibited multistability in some range of g(leak). We also explored HCOs built of multistable neuron cases with coexisting stationary states and a bursting regime. In 96% of cases analyzed, the HCOs resumed normal alternating bursting after one of the neurons was reset to a stationary state, proving themselves robust against this perturbation.


Assuntos
Interneurônios/fisiologia , Modelos Neurológicos , Potenciais de Ação/fisiologia , Animais , Sobrevivência Celular/fisiologia , Simulação por Computador , Bases de Dados Factuais , Coração/fisiologia , Sanguessugas , Miocárdio/citologia , Sinapses/fisiologia
8.
J Clin Transl Sci ; 8(1): e5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384904

RESUMO

Introduction: This study aimed to map the maturity of precision oncology as an example of a Learning Health System by understanding the current state of practice, tools and informatics, and barriers and facilitators of maturity. Methods: We conducted semi-structured interviews with 34 professionals (e.g., clinicians, pathologists, and program managers) involved in Molecular Tumor Boards (MTBs). Interviewees were recruited through outreach at 3 large academic medical centers (AMCs) (n = 16) and a Next Generation Sequencing (NGS) company (n = 18). Interviewees were asked about their roles and relationships with MTBs, processes and tools used, and institutional practices. The interviews were then coded and analyzed to understand the variation in maturity across the evolving field of precision oncology. Results: The findings provide insight into the present level of maturity in the precision oncology field, including the state of tooling and informatics within the same domain, the effects of the critical environment on overall maturity, and prospective approaches to enhance maturity of the field. We found that maturity is relatively low, but continuing to evolve, across these dimensions due to the resource-intensive and complex sociotechnical infrastructure required to advance maturity of the field and to fully close learning loops. Conclusion: Our findings advance the field by defining and contextualizing the current state of maturity and potential future strategies for advancing precision oncology, providing a framework to examine how learning health systems mature, and furthering the development of maturity models with new evidence.

9.
Hum Genomics ; 6: 21, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23157911

RESUMO

Biomedical research has entered a period of renewed vigor with the introduction and rapid development of genomic technologies and next-generation sequencing methods. This research paradigm produces extremely large datasets that are both difficult to store and challenging to mine for relevant data. Additionally, the thorough exploration of such datasets requires more resources, personnel, and multidisciplinary expertise to properly analyze and interpret the data. As a result, modern biomedical research practices are increasingly designed to include multi-laboratory collaborations that effectively distribute the scientific workload and expand the pool of expertise within a project. The scope of biomedical research is further complicated by increased efforts in translational research, which mandates the translation of basic laboratory research results into the human medical application space, adding to the complexity of potential collaborations. This increase in multidisciplinary, multi-laboratory, and biomedical translational research identifies a specific need for formalized collaboration practices and software applications that support such efforts. Here, we describe formal technological requirements for such efforts and we review several software solutions that can effectively improve the organization, communication, and formalization of collaborations in biomedical research today.


Assuntos
Software , Pesquisa Translacional Biomédica/métodos , Animais , Biologia Computacional , Comportamento Cooperativo , Bases de Dados Factuais , Genômica/métodos , Humanos , Internet
10.
PLoS One ; 18(3): e0279841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36943842

RESUMO

Cortical and basal ganglia circuits play a crucial role in the formation of goal-directed and habitual behaviors. In this study, we investigate the cortico-striatal circuitry involved in learning and the role of this circuitry in the emergence of inflexible behaviors such as those observed in addiction. Specifically, we develop a computational model of cortico-striatal interactions that performs concurrent goal-directed and habit learning. The model accomplishes this by distinguishing learning processes in the dorsomedial striatum (DMS) that rely on reward prediction error signals as distinct from the dorsolateral striatum (DLS) where learning is supported by salience signals. These striatal subregions each operate on unique cortical input: the DMS receives input from the prefrontal cortex (PFC) which represents outcomes, and the DLS receives input from the premotor cortex which determines action selection. Following an initial learning of a two-alternative forced choice task, we subjected the model to reversal learning, reward devaluation, and learning a punished outcome. Behavior driven by stimulus-response associations in the DLS resisted goal-directed learning of new reward feedback rules despite devaluation or punishment, indicating the expression of habit. We repeated these simulations after the impairment of executive control, which was implemented as poor outcome representation in the PFC. The degraded executive control reduced the efficacy of goal-directed learning, and stimulus-response associations in the DLS were even more resistant to the learning of new reward feedback rules. In summary, this model describes how circuits of the dorsal striatum are dynamically engaged to control behavior and how the impairment of executive control by the PFC enhances inflexible behavior.


Assuntos
Gânglios da Base , Corpo Estriado , Corpo Estriado/fisiologia , Gânglios da Base/fisiologia , Neostriado , Motivação , Reversão de Aprendizagem , Recompensa
11.
Cureus ; 14(11): e31206, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36505139

RESUMO

Background Coronavirus disease 2019 (COVID-19) infection can vary from asymptomatic infection to multi-organ dysfunction. The most serious complication of infection with COVID-19 is death. Various comorbid conditions and inflammatory markers have been associated with an increased risk of mortality, specifically within the immediate post-infection period; however, less is known about long-term mortality outcomes. Objectives Our objective is to determine risk factors associated with six-month mortality in hospitalized COVID-19 patients. Methods This is a single-institution, retrospective study. We included patients hospitalized with COVID-19 from the University of Toledo Medical Center in Toledo, Ohio, who were admitted from March 20, 2020, to June 30, 2021. This study was approved by a biomedical institutional review board at the University of Toledo. Patients with available pre-stored blood samples for laboratory testing were included, and hospital charts were assessed up to six months from the date of a positive COVID-19 test result. Two groups were created based on the mortality outcome at six months from COVID-19 positive test results: survivors and non-survivors. The clinical variables or outcomes and laboratory values were compared between the two groups using non-parametric methods due to the small sample size and non-normality of the data. Either the Mann-Whitney U-test for continuous variables or Fisher's exact test for categorical variables was used for statistical analysis. Results Lactate dehydrogenase (LDH) and D-dimer levels on admission were found to be significantly higher in non-survivors than in survivors. The median high D-dimer level in non-survivors was 5.96 micrograms/milliliter (µg/mL) (interquartile range (IQR): 3.95-11.29 µg/mL) vs 1.82 µg/mL (IQR 1.13-5.55 µg/mL) in survivors (p = 0.019). Median LDH levels were also higher in non-survivors vs survivors, i.e., 621.00 international units per liter (IU/L) (IQR 440.00-849.00 IU/L) vs 328.00 IU/L (IQR 274.00-529.00 IU/L), respectively (p = 0.032). The demographic profile, comorbidity profile, and laboratory data (typically associated with short-term mortality, inflammation, and organ dysfunction) were similar between survivors and non-survivors, except for LDH and D-dimer. Conclusion Higher LDH and D-dimer levels on admission were found to be associated with an increased six-month mortality rate in hospitalized COVID-19 patients. These hematologic data can serve as risk stratification tools to prevent long-term mortality outcomes and provide proactive clinical care in hospitalized COVID-19 patients.

12.
Cureus ; 14(8): e27862, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36110457

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) infection is associated with an increased risk of arterial thromboembolic events (ATE) and venous thromboembolic events (VTE). Hypercoagulability associated with COVID-19 infection is multifactorial, and underlying pathogenic mechanisms potentially responsible for thrombosis include inflammation resulting in endothelial damage, platelet activation and the presence of antiphospholipid antibodies (APAs). Antiphospholipid antibody syndrome is one of the very few causes which is associated with venous and arterial thromboembolic events. COVID-19 patients have a high prevalence of APAs as well as both ATE and VTE, but their clinical significance in COVID-19 patients is not fully understood yet. OBJECTIVES: In this study, we intend to find the prevalence of APAs in hospitalized COVID-19 patients at the time of diagnosis and determine whether their presence has any clinical significance. METHODS: This is a retrospective single-institution study involving patients hospitalized for the management of COVID-19 infection at The University of Toledo Medical Center. After obtaining approval from the biomedical institutional review board at The University of Toledo, antiphospholipid antibody (APA) testing was done on pre-stored blood samples of these patients and hospital charts were reviewed till six months from the positive COVID-19 test result. Two groups were created based on the patients' APA testing results (APA positive and APA negative) and used for statistical comparison. Any patients with positive lupus anticoagulant (LA) or abnormal titers APA antibodies were labeled as positive. Demographic data, prognostic outcomes and laboratory values were compared either using Mann-Whitney U-test for continuous variables or Fisher's exact test for categorical variables. RESULTS: The prevalence of APAs in hospitalized COVID-19 patients at the time of diagnosis was 39.3% in this study. There was no difference in demographic variables between the APA-positive and APA-negative groups. The prevalence of APAs was higher in smokers, where 91% of the APA-positive patients were smokers. There was no statistically significant difference in prognostic outcomes including six-month mortality between APA-positive and APA-negative patients. The comorbidity profile was the same in the two groups. APA-positive patients were found to have lower nadir of absolute lymphocyte count and higher nadir levels of C-reactive protein during hospitalization. CONCLUSIONS: The prevalence of APA positivity in hospitalized COVID-19 patients is higher in our study than in historical studies involving non-COVID-19 hospitalized patients, particularly in smokers. However, there is no correlation between APA positivity and prognostic outcomes including six-month mortality. At this point, it is unclear whether APAs are just bystanders or have a pathogenic role. Routine testing of APA in COVID-19 patients is not indicated. Further prospective studies to elucidate the persistence and clinical implications of APAs are needed.

13.
Neuropharmacology ; 198: 108780, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34480911

RESUMO

Acute ethanol (EtOH) intoxication results in several maladaptive behaviors that may be attributable, in part, to the effects of EtOH on neural activity in medial prefrontal cortex (mPFC). The acute effects of EtOH on mPFC function have been largely described as inhibitory. However, translating these observations on function into a mechanism capable of delineating acute EtOH's effects on behavior has proven difficult. This review highlights the role of acute EtOH on electrophysiological measurements of mPFC function and proposes that interpreting these changes through the lens of dynamical systems theory is critical to understand the mechanisms that mediate the effects of EtOH intoxication on behavior. Specifically, the present review posits that the effects of EtOH on mPFC N-methyl-d-aspartate (NMDA) receptors are critical for the expression of impaired behavior following EtOH consumption. This hypothesis is based on the observation that recurrent activity in cortical networks is supported by NMDA receptors, and, when disrupted, may lead to impairments in cognitive function. To evaluate this hypothesis, we discuss the representation of mPFC neural activity in low-dimensional, dynamic state spaces. This approach has proven useful for identifying the underlying computations necessary for the production of behavior. Ultimately, we hypothesize that EtOH-related alterations to NMDA receptor function produces alterations that can be effectively conceptualized as impairments in attractor dynamics and provides insight into how acute EtOH disrupts forms of cognition that rely on mPFC function. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Consumo de Bebidas Alcoólicas , Intoxicação Alcoólica/psicologia , Alcoolismo , Animais , Humanos , Rede Nervosa/efeitos dos fármacos
14.
Biogeosciences ; 18(19): 5291-5311, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35126532

RESUMO

Waters impounded behind dams (i.e., reservoirs) are important sources of greenhouses gases (GHGs), especially methane (CH4), but emission estimates are not well constrained due to high spatial and temporal variability, limitations in monitoring methods to characterize hot spot and hot moment emissions, and the limited number of studies that investigate diurnal, seasonal, and interannual patterns in emissions. In this study, we investigate the temporal patterns and biophysical drivers of CH4 emissions from Acton Lake, a small eutrophic reservoir, using a combination of methods: eddy covariance monitoring, continuous warm-season ebullition measurements, spatial emission surveys, and measurements of key drivers of CH4 production and emission. We used an artificial neural network to gap fill the eddy covariance time series and to explore the relative importance of biophysical drivers on the interannual timescale. We combined spatial and temporal monitoring information to estimate annual whole-reservoir emissions. Acton Lake had cumulative areal emission rates of 45.6 ± 8.3 and 51.4 ± 4.3 g CH4 m-2 in 2017 and 2018, respectively, or 109 ± 14 and 123 ± 10 Mg CH4 in 2017 and 2018 across the whole 2.4 km2 area of the lake. The main difference between years was a period of elevated emissions lasting less than 2 weeks in the spring of 2018, which contributed 17 % of the annual emissions in the shallow region of the reservoir. The spring burst coincided with a phytoplankton bloom, which was likely driven by favorable precipitation and temperature conditions in 2018 compared to 2017. Combining spatially extensive measurements with temporally continuous monitoring enabled us to quantify aspects of the spatial and temporal variability in CH4 emission. We found that the relationships between CH4 emissions and sediment temperature depended on location within the reservoir, and we observed a clear spatiotemporal offset in maximum CH4 emissions as a function of reservoir depth. These findings suggest a strong spatial pattern in CH4 biogeochemistry within this relatively small (2.4 km2) reservoir. In addressing the need for a better understanding of GHG emissions from reservoirs, there is a trade-off in intensive measurements of one water body vs. short-term and/or spatially limited measurements in many water bodies. The insights from multi-year, continuous, spatially extensive studies like this one can be used to inform both the study design and emission upscaling from spatially or temporally limited results, specifically the importance of trophic status and intra-reservoir variability in assumptions about upscaling CH4 emissions.

15.
Front Med (Lausanne) ; 8: 744651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805211

RESUMO

Introduction: Ventilator-associated events (VAEs) are objective measures as defined by the Centers for Disease Control and Prevention (CDC). To reduce VAEs, some hospitals have started patients on higher baseline positive end-expiratory pressure (PEEP) to avoid triggering VAE criteria due to respiratory fluctuations. Methods: At our institution, VAEs were gathered from January 2014 through December 2019. Using the CDC-defined classifications, VAEs were split into two groups to separate patients with hypoxemia only (VAC) and those with hypoxemia and evidence of inflammation or infection (IVAC-plus). We used the geometric distribution to calculate the daily event probability before and after the protocol implementation. A probability threshold was used to determine if the days between events was exceeded during the post-protocol period. Results: A total of 306 VAEs were collected over the study period. Of those, 155 were VACs and 107 were IVAC-plus events during the pre-protocol period. After implementing the protocol, 24 VACs and 20 IVAC-plus events were reported. There was a non-significant decrease in daily event probabilities in both the VAC and IVAC-plus groups (0.083 vs. 0.068 and 0.057 vs. 0.039, respectively). Conclusion: We concluded a starting PEEP of 8 cmH2O is unlikely to be an effective intervention at reducing the probability of a VAE. Until specific guidelines by the CDC are established, hospitals should consider alternative methods to reduce VAEs.

16.
J Grad Med Educ ; 12(2): 217-220, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32322357

RESUMO

BACKGROUND: International medical graduates (IMGs) form a significant portion of the physician workforce in the United States and are vital in filling training slots due to a shortage of American medical graduates. Most often, IMGs require visa sponsorship, which must be solidified before applying for a residency or fellowship. OBJECTIVE: We examined the association of H-1B visa sponsorship on retention of physician trainees within the state of Ohio. METHODS: This was a single institutional study that examined all visa-sponsored residency and fellowship graduates who entered fully licensed clinical practice between 2006 and 2015. Practice location was ascertained immediately upon completion of training and at follow-up to determine which visa group (H-1B or J-1) were more likely to initially practice in Ohio after graduation and remain within the state. RESULTS: Of 103 visa-sponsored residency and fellowship graduates, 42 were H-1B sponsored and 61 were J-1-sponsored. Fifty-two percent (22) of H-1B visa-sponsored trainees and 31% (19) of J-1 visa-sponsored trainees were retained in Ohio after graduation. At follow-up, 40% (17) of H-1B and 26% (16) of J-1 visa holders remained in the state. CONCLUSIONS: H-1B visa-sponsored trainees were more likely than those with J-1 visas to practice in the state of Ohio after graduation. Regardless of visa status, graduates tended not to change their geographical location over time.


Assuntos
Bolsas de Estudo/estatística & dados numéricos , Médicos Graduados Estrangeiros/estatística & dados numéricos , Internato e Residência/estatística & dados numéricos , Centros Médicos Acadêmicos/estatística & dados numéricos , Educação de Pós-Graduação em Medicina/estatística & dados numéricos , Emigração e Imigração/legislação & jurisprudência , Humanos , Ohio , Médicos/provisão & distribuição
17.
J Appl Physiol (1985) ; 129(5): 1193-1202, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32940558

RESUMO

Excessive blood pressure variation is linked to the development of hypertension and other diseases. This study assesses the relative role of respiratory sinus arrhythmia (RSA) and pulse pressure (PP) on the amplitude and timing of blood pressure variability with respiration [Traube-Hering (TH) waves]. We analyzed respiratory, electrocardiogram, and blood pressure traces from healthy, supine male subjects (n = 10, mean age = 26.7 ± 1.4) during 20-min epochs of resting, slow deep breathing (SDB), and recovery. Across all epochs, blood pressure and heart rate (HR) were modulated with respiration and the magnitude of RSA; TH waves increased during SDB. The data were deconstructed using a simple mathematical model of blood pressure to dissect the relative roles of RSA and PP on TH waves. We constructed the time series of the R-wave peaks and compared the recorded TH waves with that predicted by the model. Given that cardiac output is determined by both heart rate and stroke volume, it was surprising that the magnitude of the TH waves could be captured by only HR modulation. However, RSA alone did not accurately predict the timing of TH waves relative to the respiratory cycle. Adding respiratory modulation of PP to the model corrected the phase shift showing the expected pattern of BP rising during inspiration with the peak of the TH wave during early expiration. We conclude that short-term variability of blood pressure referred to as TH waves has at least two independent mechanisms whose interaction forms their pattern: RSA and respiratory-driven changes in PP.NEW & NOTEWORTHY Variability in blood pressure has become an important metric to consider as more is learned about the link between excessive blood pressure variability and adverse health outcomes. In this study using slow deep breathing in human subjects, we found that heart rate and pulse pressure variations have comparable effects on the amplitude of blood pressure waves, and it is the common action of the two that defines the phase relationship between respiration and blood pressure oscillations.


Assuntos
Pressão Sanguínea , Arritmia Sinusal Respiratória , Adulto , Arritmia Sinusal , Eletrocardiografia , Frequência Cardíaca , Humanos , Masculino , Respiração
18.
J Clin Transl Sci ; 3(1): 45, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31660226

RESUMO

[This corrects the article DOI: 10.1017/cts.2018.339.].

19.
Am J Infect Control ; 47(4): 462-464, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30522840

RESUMO

We analyzed a set of clinical parameters using Cox proportional hazard regressions to yield significant factors associated with the development of ventilator-associated events. In our study, intubation site, certain comorbidities, morphine, prednisone, and nutrition emerged as factors. Additionally, we presented potential mechanisms that require further research to validate.


Assuntos
Regras de Decisão Clínica , Pneumonia Associada à Ventilação Mecânica/epidemiologia , Respiração Artificial/efeitos adversos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Medição de Risco
20.
PLoS One ; 14(4): e0214926, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30978216

RESUMO

Motor adaptation to perturbations is provided by learning mechanisms operating in the cerebellum and basal ganglia. The cerebellum normally performs motor adaptation through supervised learning using information about movement error provided by visual feedback. However, if visual feedback is critically distorted, the system may disengage cerebellar error-based learning and switch to reinforcement learning mechanisms mediated by basal ganglia. Yet, the exact conditions and mechanisms of cerebellum and basal ganglia involvement in motor adaptation remain unknown. We use mathematical modeling to simulate control of planar reaching movements that relies on both error-based and non-error-based learning mechanisms. We show that for learning to be efficient only one of these mechanisms should be active at a time. We suggest that switching between the mechanisms is provided by a special circuit that effectively suppresses the learning process in one structure and enables it in the other. To do so, this circuit modulates learning rate in the cerebellum and dopamine release in basal ganglia depending on error-based learning efficiency. We use the model to explain and interpret experimental data on error- and non-error-based motor adaptation under different conditions.


Assuntos
Adaptação Fisiológica/fisiologia , Gânglios da Base/fisiologia , Cerebelo/fisiologia , Modelos Neurológicos , Movimento/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA