Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(18): 6195-6207, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36040486

RESUMO

Diatoms are ubiquitous photosynthetic microorganisms with great potential for biotechnological applications. However, their commercialisation is hampered by production costs, requiring hence optimisation of cultivation methods. Phytohormones are plant growth regulators which may be used to influence physiological processes in microalgae, including diatoms. In this study, the model species Phaeodactylum tricornutum (Phaeodactylaceae) and two Irish isolates of Stauroneis sp. (Stauroneidaceae) and Nitzschia sp. (Bacillariaceae) were grown with varying amounts of the phytohormones indoleacetic acid (IAA), gibberellic acid (GA3), methyl jasmonate (MJ), abscisic acid (ABA) or salicylic acid (SA), and their influence on pigment and fatty acid profiles was monitored. The application of GA3 (200 mg/l) stimulated the growth of P. tricornutum which accumulated 52% more dry biomass compared to the control and concomitantly returned the highest eicosapentaenoic acid (EPA) yield (0.6 mg/l). The highest fucoxanthin yield (0.18 mg/l) was obtained for P. tricornutum cultivated with GA3 (2 mg/l) supplementation. In Stauroneis sp., SA (1 mg/l) had the most positive effect on EPA, the content of which was enhanced up to 45.7 µg/mg (4.6% of total dry weight). The SA (1 mg/l) treatment also boosted carotenogenesis in Nitzschia sp., leading to 1.7- and 14-fold increases in fucoxanthin and ß-carotene compared to the control, respectively. Of note, MJ (0.5 mg/l) increased the EPA content of all diatom species compared to their controls. These results indicate that phytohormone-based treatments can be used to alter the pigment and lipid content of microalgae, which tend to respond in dose- and species-specific manners to individual compounds.Key points• Response to phytohormones was investigated in diatoms from distinct families.• MJ (0.5 mg/l) caused an increase in EPA cellular content in all three diatoms.• Phytohormones mostly caused dose-dependent and species-specific responses.


Assuntos
Diatomáceas , Microalgas , Suplementos Nutricionais , Ácido Eicosapentaenoico , Ácidos Graxos , Humanos , Reguladores de Crescimento de Plantas
2.
Bioprocess Biosyst Eng ; 45(12): 1967-1977, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36264371

RESUMO

Compounds from microalgae such as ω3-fatty acids or carotenoid are commercially exploited within the pharmacology, nutraceutical, or cosmetic sectors. The co-stimulation of several compounds of interest may improve the cost-effectiveness of microalgal biorefinery pipelines. This study focussed on Phaeodactylum tricornutum to investigate the effects on lipogenesis and carotenogenesis of combined stressors, here cold temperature and addition of NaCl salt or the phytohormone abscisic acid, using a two-stage cultivation strategy. Cold stress with NaCl or phytohormone addition increased the neutral lipid content of the biomass (20 to 35%). These treatments also enhanced the proportions of EPA (22% greater than control) in the fatty acid profile. Also, these treatments had a stimulatory effect on carotenogenesis, especially the combination of cold stress with NaCl addition, which returned the highest production of fucoxanthin (33% increase). The gene expression of diacylglycerol acyltransferase (DGAT) and the ω-3 desaturase precursor (PTD15) were enhanced 4- and 16-fold relative to the control, respectively. In addition, zeaxanthin epoxidase 3 (ZEP3), was downregulated at low temperature when combined with abscisic acid. These results highlight the benefits of applying a combination of low temperature and salinity stress, to simultaneously enhance the yields of the valuable metabolites EPA and fucoxanthin in Phaeodactylum tricornutum.


Assuntos
Diatomáceas , Microalgas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Lipogênese , Cloreto de Sódio , Resposta ao Choque Frio , Reguladores de Crescimento de Plantas/metabolismo , Microalgas/metabolismo , Suplementos Nutricionais
3.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830076

RESUMO

Microalgae have received growing interest for their capacity to produce bioactive metabolites. This study aimed at characterising the antimicrobial potential of the marine dinoflagellate Amphidinium carterae strain LACW11, isolated from the west of Ireland. Amphidinolides have been identified as cytotoxic polyoxygenated polyketides produced by several Amphidinium species. Phylogenetic inference assigned our strain to Amphidinium carterae subclade III, along with isolates interspersed in different geographic regions. A two-stage extraction and fractionation process of the biomass was carried out. Extracts obtained after stage-1 were tested for bioactivity against bacterial ATCC strains of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa. The stage-2 solid phase extraction provided 16 fractions, which were tested against S. aureus and E. faecalis. Fractions I, J and K yielded minimum inhibitory concentrations between 16 µg/mL and 256 µg/mL for both Gram-positive. A targeted metabolomic approach using UHPLC-HRMS/MS analysis applied on fractions G to J evidenced the presence of amphidinol type compounds AM-A, AM-B, AM-22 and a new derivative dehydroAM-A, with characteristic masses of m/z 1361, 1463, 1667 and 1343, respectively. Combining the results of the biological assays with the targeted metabolomic approach, we could conclude that AM-A and the new derivative dehydroAM-A are responsible for the detected antimicrobial bioactivity.


Assuntos
Antibacterianos/farmacologia , Organismos Aquáticos/química , Bactérias/crescimento & desenvolvimento , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dinoflagellida/química , Macrolídeos/farmacologia , Antibacterianos/química , Organismos Aquáticos/crescimento & desenvolvimento , Compostos Bicíclicos Heterocíclicos com Pontes/química , Dinoflagellida/crescimento & desenvolvimento , Macrolídeos/química
4.
Appl Biochem Biotechnol ; 194(10): 4492-4510, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35467238

RESUMO

There has been increasing demands worldwide for bioactive compounds of natural origins, especially for the nutraceutical and food-supplement sectors. In this context, microalgae are viewed as sustainable sources of molecules with an array of health benefits. For instance, astaxanthin is a xanthophyll pigment with powerful antioxidant capacity produced by microalgae such as the chlorophyte Haematococcus sp., which is regarded as the most suitable organism for the mass production of this pigment. In this study, three Haematococcus sp. strains were cultivated using a batch mode under favourable conditions to promote vegetative growth. Their environment was altered in a second phase using a higher and constant illumination regime combined with either exposure to blue LED light, an osmotic shock (with NaCl addition) or supplementation with a phytohormone (gibberellic acid, GA3), a plant extract (ginger), an herbicide (molinate) or an oxidant reagent (hydrogen peroxide). The effects of these stressors were evaluated in terms of antioxidant response and astaxanthin and ß-carotene accumulation. Overall, strain CCAP 34/7 returned the highest Trolox Equivalent Antioxidant Capacity (TEAC) response (14.1-49.1 µmoL Trolox eq. g- 1 of DW), while the highest antioxidant response with the Folin-Ciocalteu (FC) was obtained for strain RPFW01 (62.5-155 µmoL Trolox eq. g- 1 of DW). The highest ß-ß-carotene content was found in strain LAFW15 when supplemented with the ginger extract (4.8 mg. g- 1). Strain RPFW01 exposed to blue light returned the highest astaxanthin yield (2.8 mg. g- 1), 5-fold that of strain CCAP 34/7 on average. This study documents the importance of screening several strains when prospecting for species with potential to produce high-value metabolites. It highlights that strain-specific responses can ensue from exposure of cells to a variety of stressors, which is important for the adequate tailoring of a biorefinery pipeline.


Assuntos
Clorofíceas , Clorófitas , Herbicidas , Microalgas , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Carotenoides/metabolismo , Clorofíceas/metabolismo , Peróxido de Hidrogênio , Microalgas/metabolismo , Oxidantes/metabolismo , Extratos Vegetais/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Cloreto de Sódio , Xantofilas/metabolismo , beta Caroteno/metabolismo
5.
J Biotechnol ; 360: 125-132, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36375623

RESUMO

There have been growing interests in microalgal biotechnology for the biorefining of bioactive compounds such as carotenoid pigments, ω-3 fatty acids, antioxidants or antimicrobials for sectoral applications in the pharmacology, nutraceutical and cosmetic fields. This study focused on the unicellular marine rhodophyte Porphyridium purpureum CCAP 1380/1 A, which was cultivated via a two-stage batch growth mode for 10 days using hydrogen peroxide (H2O2), the phytohormone methyl jasmonate (MJ) and three plant extracts (Passiflora incarnata, Panax ginseng and Valeriana officinalis). The microalgal biomass was then analysed for its protein, phycoerythtin, carbohydrate and pigment composition together with its pigment content and antioxidant activity. Of note, MJ increased the protein and phycoerythtin content (up to 225 µg BSA eq./mg DW and 15 mg/ml, respectively) while both the MJ and H2O2 treatments increased carotenoid pigment yields (ß-carotene and zeaxanthin, up to 5 and 4 mg/g, respectively). Carbohydrates were enhanced ∼10 fold by the Valeriana officinalis treatment (up 192 µg starch eq./mg). Overall, neutral lipids and antioxidants were mostly negatively affected by the plant extracts. The greatest antioxidant activity registered was obtained with the H2O2 treatment (15 µmol Trolox eq./g DW with TEAC assay). P. purpureum contains multiple valuable compounds of commercial interest. These results indicate that they can be favorably modulated using specific cultivation regimes and chemical enhancers, thereby facilitating the exploitation of the biomass by applying a suitable co-refinery pipeline.


Assuntos
Porphyridium , Antioxidantes , Peróxido de Hidrogênio , Extratos Vegetais/farmacologia
6.
Appl Biochem Biotechnol ; 193(12): 4052-4067, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34611856

RESUMO

There have been growing interests in the biorefining of bioactive compounds from marine microalgae, including pigments, omega-3 fatty acids or antioxidants for use in the nutraceutical and cosmetic sectors. This study focused on the comparative responses of five marine microalgal species from different lineages, including the dinoflagellate Amphidinium carterae, chlorophyte Brachiomonas submarina, diatom Stauroneis sp., haptophyte Diacronema sp. and rhodophyte Rhodella violacea, to exposure during their batch growth to hydrogen peroxide (H2O2). A. carterae returned an enhanced signal with the DPPH assay (8.8 µmol Trolox eq/g DW) when exposed to H2O2, which was associated with reduced pigment yields and increased proportions in saturated C16 and C18 fatty acids. B. submarina showed enhanced antioxidant response upon exposure to H2O2 with the DPPH assay (10 µmol Trolox eq/g DW), a threefold decrease in lutein (from 2.3 to 0.8 mg/g) but a twofold increase in chlorophyll b (up to 30.0 mg/g). Stauroneis sp. showed a downward response for the antioxidant assays, but its pigment yields did not vary significantly from the control. Diacronema sp. showed reduced antioxidant response and fucoxanthin content (from 4.0 to 0.2 mg/g) when exposed to 0.5 mM H2O2. R. violacea exposed to H2O2 returned enhanced antioxidant activity and proportions of EPA but was not significantly impacted in terms of pigment content. Results indicate that H2O2 can be used to induce stress and initiate metabolic changes in microalgae. The responses were however species-specific, which would require further dosage optimisation to modulate the yields of specific metabolites in individual species.


Assuntos
Peróxido de Hidrogênio/farmacologia , Microalgas/metabolismo , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA