Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 44(2): 146-54, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20348209

RESUMO

Bronchopulmonary dysplasia (BPD) is the main complication of extreme prematurity, resulting in part from mechanical ventilation and oxygen therapy. Currently, no specific treatment exists for BPD. BPD is characterized by an arrest in alveolar development and increased apoptosis of alveolar epithelial cells (AECs). Type 2 AECs are putative distal lung progenitor cells, capable of regenerating alveolar homeostasis after injury. We hypothesized that the protection of AEC2 death via the activation of the prosurvival Akt pathway prevents arrested alveolar development in experimental BPD. We show that the pharmacologic inhibition of the prosurvival factor Akt pathway with wortmannin during the critical period of alveolar development impairs alveolar development in newborn rats, resulting in larger and fewer alveoli, reminiscent of BPD. Conversely, in an experimental model of BPD induced by oxygen exposure of newborn rats, alveolar simplification is associated with a decreased activation of lung Akt. In vitro studies with rat lung epithelial (RLE) cells cultured in hyperoxia (95% O(2)) showed decreased apoptosis and improved cell survival after the forced expression of active Akt by adenovirus-mediated gene transfer. In vivo, adenovirus-mediated Akt gene transfer preserves alveolar architecture in the newborn rat model of hyperoxia-induced BPD. We conclude that inhibition of the prosurvival factor Akt disrupts normal lung development, whereas the expression of active Akt in experimental BPD preserves alveolar development. We speculate that the modulation of apoptosis may have therapeutic potential in lung diseases characterized by alveolar damage.


Assuntos
Hiperóxia/complicações , Lesão Pulmonar/metabolismo , Lesão Pulmonar/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Androstadienos/farmacologia , Animais , Animais Recém-Nascidos , Apoptose , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/prevenção & controle , Técnicas In Vitro , Recém-Nascido , Lesão Pulmonar/etiologia , Oxigênio/toxicidade , Oxigenoterapia/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Ratos , Wortmanina
2.
Proteome Sci ; 8: 38, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20618950

RESUMO

BACKGROUND: During and following myocardial ischemia, glucose oxidation rates are low and fatty acids dominate as a source of oxidative metabolism. This metabolic phenotype is associated with contractile dysfunction during reperfusion. To determine the mechanism of this reliance on fatty acid oxidation as a source of ATP generation, a functional proteomics approach was utilized. RESULTS: 2-D gel electrophoresis of mitochondria from working rat hearts subjected to 25 minutes of global no flow ischemia followed by 40 minutes of aerobic reperfusion identified 32 changes in protein abundance compared to aerobic controls. Of the five proteins with the greatest change in abundance, two were increased (long chain acyl-coenzyme A dehydrogenase (48 +/- 1 versus 39 +/- 3 arbitrary units, n = 3, P < 0.05) and alpha subunit of ATP synthase (189 +/- 15 versus 113 +/- 23 arbitrary units, n = 3, P < 0.05)), while two were decreased (24 kDa subunit of NADH-ubiquinone oxidoreductase (94 +/- 7 versus 127 +/- 9 arbitrary units, n = 3, P < 0.05) and D subunit of ATP synthase (230 +/- 11 versus 368 +/- 47 arbitrary units, n = 3, P < 05)). Two forms of pyruvate dehydrogenase betaE1 subunit, the rate-limiting enzyme for glucose oxidation, were also identified. The protein level of the more acidic form of pyruvate dehydrogenase was reduced during reperfusion (37 +/- 4 versus 56 +/- 7 arbitrary units, n = 3, P < 05), while the more basic form remained unchanged. The more acidic isoform was found to be O-palmitoylated, while both isoforms exhibited ischemia/reperfusion-induced phosphorylation. In silico analysis identified the putative kinases as the insulin receptor kinase for the more basic form and protein kinase Czeta or protein kinase A for the more acidic form. These modifications of pyruvate dehydrogenase are associated with a 35% decrease in glucose oxidation during reperfusion. CONCLUSIONS: Cardiac ischemia/reperfusion induces significant changes to a number of metabolic proteins of the mitochondrial proteome. In particular, ischemia/reperfusion induced the post-translational modification of pyruvate dehydrogenase, the rate-limiting step of glucose oxidation, which is associated with a 35% decrease in glucose oxidation during reperfusion. Therefore these post-translational modifications may have important implications in the regulation of myocardial energy metabolism.

3.
Am J Physiol Heart Circ Physiol ; 292(3): H1460-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17098823

RESUMO

AMP-activated protein kinase (AMPK) is a major metabolic regulator in the cardiac myocyte. Recently, LKB1 was identified as a kinase that regulates AMPK. Using immunoblot analysis, we confirmed high expression of LKB1 in isolated rat cardiac myocytes but show that, under basal conditions, LKB1 is primarily localized to the nucleus, where it is inactive. We examined the role of LKB1 in cardiac myocytes, using adenoviruses that express LKB1, and its binding partners Ste20-related adaptor protein (STRADalpha) and MO25alpha. Infection of neonatal rat cardiac myocytes with all three adenoviruses substantially increased LKB1/STRADalpha/MO25alpha expression, LKB1 activity, and AMPKalpha phosphorylation at its activating phosphorylation site (threonine-172). Since activation of AMPK can inhibit hypertrophic growth and since LKB1 is upstream of AMPK, we hypothesized that expression of an active LKB1 complex would also inhibit protein synthesis associated with hypertrophic growth. Expression of the LKB1/STRADalpha/MO25alpha complex in neonatal rat cardiac myocytes inhibited the increase in protein synthesis observed in cells treated with phenylephrine (measured via [(3)H]phenylalanine incorporation). This was associated with a decreased phosphorylation of p70S6 kinase and its substrate S6 ribosomal protein, key regulators of protein synthesis. In addition, we show that the pathological cardiac hypertrophy in transgenic mice with cardiac-specific expression of activated calcineurin is associated with a significant decrease in LKB1 expression. Together, our data show that increased LKB1 activity in the cardiac myocyte can decrease hypertrophy-induced protein synthesis and suggest that LKB1 activation may be a method for the prevention of pathological cardiac hypertrophy.


Assuntos
Cardiomegalia/fisiopatologia , Células Musculares/fisiologia , Fenilefrina , Proteínas Serina-Treonina Quinases/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Adenoviridae , Animais , Animais Recém-Nascidos , Cardiomegalia/induzido quimicamente , Cardiomegalia/prevenção & controle , Células Cultivadas , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Camundongos , Camundongos Transgênicos , Células Musculares/citologia , Células Musculares/efeitos dos fármacos , Plasmídeos , Proteínas Serina-Treonina Quinases/genética , Ratos , Proteínas Recombinantes/metabolismo , Transfecção
4.
J Biol Chem ; 278(41): 39422-7, 2003 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-12890675

RESUMO

In the heart, insulin stimulates a variety of kinase cascades and controls glucose utilization. Because insulin is able to activate Akt and inactivate AMP-activated protein kinase (AMPK) in the heart, we hypothesized that Akt can regulate the activity of AMPK. To address the potential existence of this novel signaling pathway, we used a number of experimental protocols to activate Akt in cardiac myocytes and monitored the activation status of AMPK. Mouse hearts perfused in the presence of insulin demonstrated accelerated glycolysis and glucose oxidation rates as compared with non-insulin-perfused hearts. In addition, insulin caused an increase in Akt phosphorylation and a decrease in AMPK phosphorylation at its major regulatory site (threonine 172 of the alpha catalytic subunit). Transgenic mice overexpressing a constitutively active mutant form of Akt1 displayed decreased phosphorylation of cardiac alpha-AMPK. Isolated neonatal cardiac myocytes infected with an adenovirus expressing constitutively active mutant forms of either Akt1 or Akt2 also suppressed AMPK phosphorylation. However, Akt-dependent depression of alpha-AMPK phosphorylation could be overcome in the presence of the AMPK activator, metformin, suggesting that an override mechanism exists that can restore AMPK activity. Taken together, this study suggests that there is cross-talk between the AMPK and Akt pathways and that Akt activation can lead to decreased AMPK activity. In addition, our data suggest that the ability of insulin to inhibit AMPK may be controlled via an Akt-mediated mechanism.


Assuntos
Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Células Cultivadas , Glucose/metabolismo , Técnicas In Vitro , Insulina/metabolismo , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Perfusão , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA