Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 172(3): 517-533.e20, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29249358

RESUMO

B cells constitute an essential line of defense from pathogenic infections through the generation of class-switched antibody-secreting cells (ASCs) in germinal centers. Although this process is known to be regulated by follicular helper T (TfH) cells, the mechanism by which B cells initially seed germinal center reactions remains elusive. We found that NKT cells, a population of innate-like T lymphocytes, are critical for the induction of B cell immunity upon viral infection. The positioning of NKT cells at the interfollicular areas of lymph nodes facilitates both their direct priming by resident macrophages and the localized delivery of innate signals to antigen-experienced B cells. Indeed, NKT cells secrete an early wave of IL-4 and constitute up to 70% of the total IL-4-producing cells during the initial stages of infection. Importantly, the requirement of this innate immunity arm appears to be evolutionarily conserved because early NKT and IL-4 gene signatures also positively correlate with the levels of neutralizing antibodies in Zika-virus-infected macaques. In conclusion, our data support a model wherein a pre-TfH wave of IL-4 secreted by interfollicular NKT cells triggers the seeding of germinal center cells and serves as an innate link between viral infection and B cell immunity.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunidade Inata , Influenza Humana/imunologia , Interleucina-4/genética , Células Matadoras Naturais/imunologia , Infecção por Zika virus/imunologia , Animais , Galinhas , Cães , Centro Germinativo/citologia , Humanos , Interleucina-4/metabolismo , Macaca , Macrófagos/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL
3.
Nat Immunol ; 13(1): 35-43, 2011 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-22120117

RESUMO

Lipid antigens trigger help from natural killer T cells (NKT cells) for B cells, and direct conjugation of lipid agonists to antigen profoundly augments antibody responses. Here we show that in vivo, NKT cells engaged in stable and prolonged cognate interactions with B cells and induced the formation of early germinal centers. Mouse and human NKT cells formed CXCR5(+)PD-1(hi) follicular helper NKT cells (NKT(FH) cells), and this process required expression of the transcriptional repressor Bcl-6, signaling via the coreceptor CD28 and interaction with B cells. NKT(FH) cells provided direct cognate help to antigen-specific B cells that was dependent on interleukin 21 (IL-21). Unlike T cell-dependent germinal centers, those driven by NKT(FH) cells did not generate long-lived plasma cells. Our results demonstrate the existence of a Bcl-6-dependent subset of NKT cells specialized in providing help to B cells.


Assuntos
Linfócitos B/imunologia , Células T Matadoras Naturais/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Comunicação Celular/imunologia , Células Cultivadas , Centro Germinativo/imunologia , Humanos , Imunofenotipagem , Interleucinas/imunologia , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Fenótipo
4.
EMBO J ; 37(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29378774

RESUMO

Intestinal homeostasis relies on a continuous dialogue between the commensal bacteria and the immune system. Natural killer T (NKT) cells, which recognize CD1d-restricted microbial lipids and self-lipids, contribute to the regulation of mucosal immunity, yet the mechanisms underlying their functions remain poorly understood. Here, we demonstrate that NKT cells respond to intestinal lipids and CD11c+ cells (including dendritic cells (DCs) and macrophages) are essential to mediate lipid presentation within the gut ultimately controlling intestinal NKT cell homeostasis and activation. Conversely, CD1d and NKT cells participate in the control of the intestinal bacteria composition and compartmentalization, in the regulation of the IgA repertoire and in the induction of regulatory T cells within the gut. These changes in intestinal homeostasis require CD1d expression on DC/macrophage populations as mice with conditional deletion of CD1d on CD11c+ cells exhibit dysbiosis and altered immune homeostasis. These results unveil the importance of CD11c+ cells in controlling lipid-dependent immunity in the intestinal compartment and reveal an NKT cell-DC crosstalk as a key mechanism for the regulation of gut homeostasis.


Assuntos
Mucosa Intestinal/imunologia , Lipídeos de Membrana/imunologia , Células T Matadoras Naturais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD1d/biossíntese , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Antígeno CD11c/metabolismo , Células Dendríticas/imunologia , Disbiose/genética , Microbioma Gastrointestinal/imunologia , Imunoglobulina A/imunologia , Interleucina-4/imunologia , Mucosa Intestinal/microbiologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Nat Immunol ; 11(4): 303-12, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20228797

RESUMO

Invariant natural killer T cells (iNKT cells) are involved in the host defense against microbial infection. Although it is known that iNKT cells recognize glycolipids presented by CD1d, how and where they encounter antigen in vivo remains unclear. Here we used multiphoton microscopy to visualize the dynamics and activation of iNKT cells in lymph nodes. After antigen administration, iNKT cells became confined in a CD1d-dependent manner in close proximity to subcapsular sinus CD169(+) macrophages. These macrophages retained, internalized and presented lipid antigen and were required for iNKT cell activation, cytokine production and population expansion. Thus, CD169(+) macrophages can act as true antigen-presenting cells controlling early iNKT cell activation and favoring the fast initiation of immune responses.


Assuntos
Apresentação de Antígeno/imunologia , Glicolipídeos/imunologia , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Células T Matadoras Naturais/imunologia , Animais , Antígenos/imunologia , Separação Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Linfonodos/citologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico
6.
Mol Cell ; 49(5): 858-71, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23333305

RESUMO

The appropriate execution of DNA double-strand break (DSB) repair is critical for genome stability and tumor avoidance. 53BP1 and BRCA1 directly influence DSB repair pathway choice by regulating 5' end resection, but how this is achieved remains uncertain. Here we report that Rif1(-/-) mice are severely compromised for 53BP1-dependent class switch recombination (CSR) and fusion of dysfunctional telomeres. The inappropriate accumulation of RIF1 at DSBs in S phase is antagonized by BRCA1, and deletion of Rif1 suppresses toxic nonhomologous end joining (NHEJ) induced by PARP inhibition in Brca1-deficient cells. Mechanistically, RIF1 is recruited to DSBs via the N-terminal phospho-SQ/TQ domain of 53BP1, and DSBs generated by ionizing radiation or during CSR are hyperresected in the absence of RIF1. Thus, RIF1 and 53BP1 cooperate to block DSB resection to promote NHEJ in G1, which is antagonized by BRCA1 in S phase to ensure a switch of DSB repair mode to homologous recombination.


Assuntos
Proteínas Cromossômicas não Histona/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/genética , DNA/metabolismo , Proteínas de Ligação a Telômeros/genética , Animais , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Camundongos , Recombinação Genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Transfecção , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
7.
Immunity ; 32(2): 187-99, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20171124

RESUMO

Early events of B cell activation after B cell receptor (BCR) triggering have been well characterized. However, little is known about the steady state of the BCR on the cell surface. Here, we simultaneously visualize single BCR particles and components of the membrane skeleton. We show that an ezrin- and actin-defined network influenced steady-state BCR diffusion by creating boundaries that restrict BCR diffusion. We identified the intracellular domain of Igbeta as important in mediating this restriction in diffusion. Importantly, alteration of this network was sufficient to induce robust intracellular signaling and concomitant increase in BCR mobility. Moreover, by using B cells deficient in key signaling molecules, we show that this signaling was most probably initiated by the BCR. Thus, our results suggest the membrane skeleton plays a crucial function in controlling BCR dynamics and thereby signaling, in a way that could be important for understanding tonic signaling necessary for B cell development and survival.


Assuntos
Actinas/metabolismo , Linfócitos B/metabolismo , Antígenos CD79/metabolismo , Membrana Celular/imunologia , Proteínas do Citoesqueleto/metabolismo , Actinas/imunologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Antígenos CD79/genética , Antígenos CD79/imunologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/imunologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/imunologia , Capeamento Imunológico/efeitos dos fármacos , Capeamento Imunológico/genética , Capeamento Imunológico/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Ligação Proteica , Engenharia de Proteínas , Estrutura Terciária de Proteína/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Tiazolidinas/farmacologia
8.
EMBO Rep ; 18(1): 39-47, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27799287

RESUMO

Innate lymphoid cells (ILCs) are a heterogeneous family of immune cells that play a critical role in a variety of immune processes including host defence against infection, wound healing and tissue repair. Whether these cells are involved in lipid-dependent immunity remains unexplored. Here we show that murine ILCs from a variety of tissues express the lipid-presenting molecule CD1d, with group 3 ILCs (ILC3s) showing the highest level of expression. Within the ILC3 family, natural cytotoxicity triggering receptor (NCR)-CCR6+ cells displayed the highest levels of CD1d. Expression of CD1d on ILCs is functionally relevant as ILC3s can acquire lipids in vitro and in vivo and load lipids on CD1d to mediate presentation to the T-cell receptor of invariant natural killer T (iNKT) cells. Conversely, engagement of CD1d in vitro and administration of lipid antigen in vivo induce ILC3 activation and production of IL-22. Taken together, our data expose a previously unappreciated role for ILCs in CD1d-mediated immunity, which can modulate tissue homeostasis and inflammatory responses.


Assuntos
Antígenos CD1d/genética , Imunidade Inata , Interleucinas/biossíntese , Ativação Linfocitária , Subpopulações de Linfócitos/metabolismo , Linfócitos/metabolismo , Animais , Apresentação de Antígeno/imunologia , Antígenos CD1d/metabolismo , Biomarcadores , Expressão Gênica , Imunofenotipagem , Metabolismo dos Lipídeos , Lipídeos/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos/imunologia , Linfócitos/imunologia , Camundongos , Camundongos Transgênicos , Fenótipo , Interleucina 22
9.
EMBO J ; 31(10): 2378-90, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22505026

RESUMO

Natural killer T (NKT) cells play an important role in mounting protective responses to blood-borne infections. However, though the spleen is the largest blood filter in the body, the distribution and dynamics of NKT cells within this organ are not well characterized. Here we show that the majority of NKT cells patrol around the marginal zone (MZ) and red pulp (RP) of the spleen. In response to lipid antigen, these NKT cells become arrested and rapidly produce cytokines, while the small proportion of NKT cells located in the white pulp (WP) exhibit limited activation. Importantly, disruption of the splenic MZ by chemical or genetic approaches results in a severe reduction in NKT cell activation indicating the need of cooperation between both MZ macrophages and dendritic cells for efficient NKT cell responses. Thus, the location of splenic NKT cells in the MZ and RP facilitates their access to blood-borne antigen and enables the rapid initiation of protective immune responses.


Assuntos
Antígenos/imunologia , Sangue/imunologia , Células T Matadoras Naturais/imunologia , Baço/citologia , Baço/imunologia , Animais , Sangue/microbiologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Lipídeos/imunologia , Ativação Linfocitária , Macrófagos/imunologia , Camundongos
10.
Mol Immunol ; 170: 1-8, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579449

RESUMO

CD1 molecules are well known for their role in binding and presenting lipid antigens to mediate the activation of CD1-restricted T cells. However, much less appreciated is the fact that CD1 molecules can have additional "unconventional" roles which impact the activation and functions of CD1-expressing cells, ultimately controlling tissue homeostasis as well as the progression of inflammatory and infectious diseases. Some of these roles are mediated by so-called reverse signalling, by which crosslinking of CD1 molecules at the cell surface initiates intracellular signalling. On the other hand, CD1 molecules can also control metabolic and inflammatory pathways in CD1-expressing cells through cell-intrinsic mechanisms independent of CD1 ligation. Here, we review the evidence for "unconventional" functions of CD1 molecules and the outcomes of such roles for health and disease.


Assuntos
Apresentação de Antígeno , Antígenos CD1 , Animais , Humanos , Antígenos CD1/metabolismo , Inflamação/imunologia , Ativação Linfocitária , Transdução de Sinais , Linfócitos T/imunologia
11.
Int J Numer Methods Eng ; 124(6): 1344-1380, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37063341

RESUMO

In this article, we investigate the estimation of the transient mold-slab heat flux in continuous casting molds given some thermocouples measurements in the mold plates. Mathematically, we can see this problem as the estimation of a Neumann boundary condition given pointwise state observations in the interior of the domain. We formulate it in a deterministic inverse problem setting. After introducing the industrial problem, we present the mold thermal model and related assumptions. Then, we formulate the boundary heat flux estimation problem in a deterministic inverse problem setting using a sequential approach according to the sequentiality of the temperature measurements. We consider different formulations of the inverse problem. For each one, we develop novel direct methodologies exploiting a space parameterization of the heat flux and the linearity of the mold model. We construct these methods to be divided into a computationally expensive offline phase that can be computed before the process starts, and a cheaper online phase to be performed during the casting process. To conclude, we test the performance of the proposed methods in two benchmark cases.

12.
Enferm Infecc Microbiol Clin (Engl Ed) ; 41(3): 162-168, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610832

RESUMO

INTRODUCTION: Carbapenem-resistant Gram-negative bacteria (CRGN) are an urgent public health threat because of the limited treatment options, its rapid spreading and high clinical impact and mortality rates. However, the burden and the use of resources of these infections have not been investigated. The aim of the current study is to understand the use of resources associated to the clinical management of CRGN infections in real clinical practice conditions. METHODS: An observational retrospective chart review study was performed. Data regarding patient demographics, clinical management and use of resources associated to hospitalization were retrieved from clinical charts of ICU inpatients with a confirmed CRGN infection. Three reference Spanish hospitals were selected according to their patient volume and geographical coverage. Descriptive analyses of the clinical management and the use of resources and its cost were performed and then total costs by type of resource were calculated. RESULTS: A total of 130 patients were included in the study. The higher number of patients (n=43; 33%) were between 61 and 70 years old. Ninety-four (72%) patients were male and 115 (88%) suffered from comorbidities. The mean total cost associated to the resources used in patients with CRGN infections hospitalized in ICU was 96,878€ per patient. These total costs included 84,140€ of total hospital stay, 11,021€ of treatments (558€ of antibiotics; 10,463€ of other treatments) and 1717€ costs of diagnostic tests. CONCLUSIONS: CRGN infection causes a high use of hospital resources, being the length of stay either in hospital wards or ICU the driver of the total costs. Diagnostic tests and treatments, including antibiotics, represent the lowest part of the use of resources and costs (13% of total costs).


Assuntos
Carbapenêmicos , Infecções por Bactérias Gram-Negativas , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Carbapenêmicos/uso terapêutico , Estudos Retrospectivos , Pacientes Internados , Espanha , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas/microbiologia , Antibacterianos/uso terapêutico , Hospitais , Unidades de Terapia Intensiva
13.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37516912

RESUMO

Mucosal-associated invariant T (MAIT) cells are abundant in the lung and contribute to host defense against infections. During bacterial infections, MAIT cell activation has been proposed to require T cell receptor (TCR)-mediated recognition of antigens derived from the riboflavin synthesis pathway presented by the antigen-presenting molecule MR1. MAIT cells can also be activated by cytokines in an MR1-independent manner, yet the contribution of MR1-dependent vs. -independent signals to MAIT cell functions in vivo remains unclear. Here, we use Klebsiella pneumoniae as a model of bacterial pneumonia and demonstrate that MAIT cell activation is independent of MR1 and primarily driven by type I interferons (IFNs). During Klebsiella infection, type I IFNs stimulate activation of murine and human MAIT cells, induce a Th1/cytotoxic transcriptional program, and modulate MAIT cell location within the lungs. Consequently, adoptive transfer or boosting of pulmonary MAIT cells protect mice from Klebsiella infection, with protection being dependent on direct type I IFN signaling on MAIT cells. These findings reveal type I IFNs as new molecular targets to manipulate MAIT cell functions during bacterial infections.


Assuntos
Interferon Tipo I , Infecções por Klebsiella , Células T Invariantes Associadas à Mucosa , Pneumonia Bacteriana , Humanos , Animais , Camundongos , Klebsiella pneumoniae
14.
Nat Commun ; 13(1): 6723, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344546

RESUMO

Alterations in cellular metabolism underpin macrophage activation, yet little is known regarding how key immunological molecules regulate metabolic programs in macrophages. Here we uncover a function for the antigen presenting molecule CD1d in the control of lipid metabolism. We show that CD1d-deficient macrophages exhibit a metabolic reprogramming, with a downregulation of lipid metabolic pathways and an increase in exogenous lipid import. This metabolic rewiring primes macrophages for enhanced responses to innate signals, as CD1d-KO cells show higher signalling and cytokine secretion upon Toll-like receptor stimulation. Mechanistically, CD1d modulates lipid import by controlling the internalization of the lipid transporter CD36, while blocking lipid uptake through CD36 restores metabolic and immune responses in macrophages. Thus, our data reveal CD1d as a key regulator of an inflammatory-metabolic circuit in macrophages, independent of its function in the control of T cell responses.


Assuntos
Imunidade Inata , Metabolismo dos Lipídeos , Antígenos CD1d/genética , Antígenos CD1d/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Lipídeos
15.
Proc Natl Acad Sci U S A ; 105(24): 8345-50, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18550831

RESUMO

Highly regulated activation of B cells is required for the production of specific antibodies necessary to provide protection from pathogen infection. This process is initiated by specific recognition of antigen through the B cell receptor (BCR), leading to early intracellular signaling followed by the late recruitment of T cell help. In this study we demonstrate that specific BCR uptake of CD1d-restricted antigens represents an effective means of enhancing invariant natural killer T (iNKT)-dependent B cell responses in vivo. This mechanism is effective over a wide range of antigen affinities but depends on exceeding a tightly regulated avidity threshold necessary for BCR-mediated internalization and CD1d-dependent presentation of particulate antigenic lipid. Subsequently, iNKT cells provide the help required for stimulating B cell proliferation and differentiation. iNKT-stimulated B cells develop within extrafollicular foci and mediate the production of high titers of specific IgM and early class-switched antibodies. Thus, we have demonstrated that in response to particulate antigenic lipids iNKT cells are recruited for the assistance of B cell activation, resulting in the enhancement of specific antibody responses. We propose that such a mechanism may operate to potentiate adaptive immune responses against pathogens in vivo.


Assuntos
Formação de Anticorpos , Antígenos CD1/metabolismo , Linfócitos B/imunologia , Células Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Apresentação de Antígeno , Antígenos CD1d , Linhagem Celular , Galactosilceramidas/imunologia , Imunização , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos
17.
FEBS J ; 287(9): 1686-1699, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022989

RESUMO

The mammalian gastrointestinal compartment is colonised by millions of microorganisms that have a central influence on human health. Intestinal homeostasis requires a continuous dialogue between the commensal bacteria and intestinal immune cells. While interactions between host and commensal bacteria are normally beneficial, allowing training and functional tuning of immune cells, dysregulated immune system-microbiota crosstalk can favour the development of chronic inflammatory diseases, as it is the case for inflammatory bowel disease (IBD). Natural killer T (NKT) cells, which recognise CD1-restricted microbial and self-lipids, contribute to the regulation of mucosal immunity by controlling intestinal homeostasis and participating in the development of IBD. Here, we provide an overview of the recently identified pathways underlying the crosstalk between commensal bacteria and NKT cells and discuss the effect of these interactions in intestinal health and disease.


Assuntos
Mucosa Intestinal/imunologia , Células T Matadoras Naturais/imunologia , Animais , Humanos , Doenças Inflamatórias Intestinais/imunologia
19.
Elife ; 82019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31841113

RESUMO

Tissue homeostasis is critically dependent on the function of tissue-resident lymphocytes, including lipid-reactive invariant natural killer T (iNKT) cells. Yet, if and how the tissue environment shapes the antigen specificity of iNKT cells remains unknown. By analysing iNKT cells from lymphoid tissues of mice and humans we demonstrate that their T cell receptor (TCR) repertoire is highly diverse and is distinct for cells from various tissues resulting in differential lipid-antigen recognition. Within peripheral tissues iNKT cell recent thymic emigrants exhibit a different TCR repertoire than mature cells, suggesting that the iNKT population is shaped after arrival to the periphery. Consistent with this, iNKT cells from different organs show distinct basal activation, proliferation and clonal expansion. Moreover, the iNKT cell TCR repertoire changes following immunisation and is shaped by age and environmental changes. Thus, post-thymic modification of the TCR-repertoire underpins the distinct antigen specificity for iNKT cells in peripheral tissues.


Assuntos
Antígenos/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Proliferação de Células , Humanos , Lipídeos/imunologia , Camundongos , Especificidade por Substrato
20.
J Vis Exp ; (141)2018 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-30507921

RESUMO

The gut microbiota has a central influence on human health. Microbial dysbiosis is associated with many common immunopathologies such as inflammatory bowel disease, asthma and arthritis. Thus, understanding the mechanisms underlying microbiota-immune system crosstalk is of crucial importance. Antibiotic administration, while aiding pathogen clearance, also induces drastic changes in the size and composition of intestinal bacterial communities which can have an impact on human health. Antibiotic treatment in mice recapitulates the impact and long-term changes in human microbiota from antibiotic treated patients, and enables investigation of the mechanistic links between changes in microbial communities and immune cell function. While several methods for antibiotic treatment of mice have been described, some of them induce severe dehydration and weight-loss complicating the interpretation of the data. Here, we provide two protocols for oral antibiotic administration which can be used for long-term treatment of mice without inducing major weight-loss. These protocols make use of a combination of antibiotics that target both Gram-positive and Gram-negative bacteria and can be provided either ad libitum in the drinking water or by oral gavage. Moreover, we describe a method for the quantification of microbial density in fecal samples by qPCR which can be used to validate the efficacy of the antibiotic treatment. The combination of these approaches provides a reliable methodology for the manipulation of the intestinal microbiota and the study of the effects of antibiotic treatment in mice.


Assuntos
Antibacterianos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Administração Oral , Animais , Quimioterapia Combinada , Fezes/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA