Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(6): e1012206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857274

RESUMO

Contagion processes, representing the spread of infectious diseases, information, or social behaviors, are often schematized as taking place on networks, which encode for instance the interactions between individuals. The impact of the network structure on spreading process has been widely investigated, but not the reverse question: do different processes unfolding on a given network lead to different infection patterns? How do the infection patterns depend on a model's parameters or on the nature of the contagion processes? Here we address this issue by investigating the infection patterns for a variety of models. In simple contagion processes, where contagion events involve one connection at a time, we find that the infection patterns are extremely robust across models and parameters. In complex contagion models instead, in which multiple interactions are needed for a contagion event, non-trivial dependencies on models parameters emerge, as the infection pattern depends on the interplay between pairwise and group contagions. In models involving threshold mechanisms moreover, slight parameter changes can significantly impact the spreading paths. Our results show that it is possible to study crucial features of a spread from schematized models, and inform us on the variations between spreading patterns in processes of different nature.


Assuntos
Doenças Transmissíveis , Biologia Computacional , Humanos , Doenças Transmissíveis/transmissão , Doenças Transmissíveis/epidemiologia , Simulação por Computador , Modelos Biológicos
2.
PLoS Comput Biol ; 19(2): e1010854, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821564

RESUMO

The structure of social networks strongly affects how different phenomena spread in human society, from the transmission of information to the propagation of contagious diseases. It is well-known that heterogeneous connectivity strongly favors spread, but a precise characterization of the redundancy present in social networks and its effect on the robustness of transmission is still lacking. This gap is addressed by the metric backbone, a weight- and connectivity-preserving subgraph that is sufficient to compute all shortest paths of weighted graphs. This subgraph is obtained via algebraically-principled axioms and does not require statistical sampling based on null-models. We show that the metric backbones of nine contact networks obtained from proximity sensors in a variety of social contexts are generally very small, 49% of the original graph for one and ranging from about 6% to 20% for the others. This reflects a surprising amount of redundancy and reveals that shortest paths on these networks are very robust to random attacks and failures. We also show that the metric backbone preserves the full distribution of shortest paths of the original contact networks-which must include the shortest inter- and intra-community distances that define any community structure-and is a primary subgraph for epidemic transmission based on pure diffusion processes. This suggests that the organization of social contact networks is based on large amounts of shortest-path redundancy which shapes epidemic spread in human populations. Thus, the metric backbone is an important subgraph with regard to epidemic spread, the robustness of social networks, and any communication dynamics that depend on complex network shortest paths.


Assuntos
Doenças Transmissíveis , Epidemias , Humanos , Doenças Transmissíveis/epidemiologia , Rede Social , Comunicação
3.
Phys Rev Lett ; 130(24): 247401, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37390429

RESUMO

Contagion processes on networks, including disease spreading, information diffusion, or social behaviors propagation, can be modeled as simple contagion, i.e., as a contagion process involving one connection at a time, or as complex contagion, in which multiple interactions are needed for a contagion event. Empirical data on spreading processes, however, even when available, do not easily allow us to uncover which of these underlying contagion mechanisms is at work. We propose a strategy to discriminate between these mechanisms upon the observation of a single instance of a spreading process. The strategy is based on the observation of the order in which network nodes are infected, and on its correlations with their local topology: these correlations differ between processes of simple contagion, processes involving threshold mechanisms, and processes driven by group interactions (i.e., by "higher-order" mechanisms). Our results improve our understanding of contagion processes and provide a method using only limited information to distinguish between several possible contagion mechanisms.


Assuntos
Reprodução , Comportamento Social , Difusão
4.
Euro Surveill ; 28(5)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36729116

RESUMO

BackgroundAs record cases of Omicron variant were registered in Europe in early 2022, schools remained a vulnerable setting undergoing large disruption.AimThrough mathematical modelling, we compared school protocols of reactive screening, regular screening, and reactive class closure implemented in France, in Baselland (Switzerland), and in Italy, respectively, and assessed them in terms of case prevention, testing resource demand, and schooldays lost.MethodsWe used a stochastic agent-based model of SARS-CoV-2 transmission in schools accounting for within- and across-class contacts from empirical contact data. We parameterised it to the Omicron BA.1 variant to reproduce the French Omicron wave in January 2022. We simulated the three protocols to assess their costs and effectiveness for varying peak incidence rates in the range experienced by European countries.ResultsWe estimated that at the high incidence rates registered in France during the Omicron BA.1 wave in January 2022, the reactive screening protocol applied in France required higher test resources compared with the weekly screening applied in Baselland (0.50 vs 0.45 tests per student-week), but achieved considerably lower control (8% vs 21% reduction of peak incidence). The reactive class closure implemented in Italy was predicted to be very costly, leading to > 20% student-days lost.ConclusionsAt high incidence conditions, reactive screening protocols generate a large and unplanned demand in testing resources, for marginal control of school transmissions. Comparable or lower resources could be more efficiently used through weekly screening. Our findings can help define incidence levels triggering school protocols and optimise their cost-effectiveness.


Assuntos
COVID-19 , Humanos , Suíça , Incidência , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , França/epidemiologia , Itália/epidemiologia , Instituições Acadêmicas
5.
Proc Biol Sci ; 288(1959): 20211164, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34583581

RESUMO

Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal network data (i.e. a stream of interactions between individuals) to a representation of the social group's evolution remains a challenge. Indeed, the temporal network at any specific time contains only the interactions taking place at that time and aggregating on successive time-windows also has important limitations. Here, we present a new framework to study the dynamic evolution of social networks based on the idea that social relationships are interdependent: as the time we can invest in social relationships is limited, reinforcing a relationship with someone is done at the expense of our relationships with others. We implement this interdependence in a parsimonious two-parameter model and apply it to several human and non-human primates' datasets to demonstrate that this model detects even small and short perturbations of the networks that cannot be detected using the standard technique of successive aggregated networks. Our model solves a long-standing problem by providing a simple and natural way to describe the dynamic evolution of social networks, with far-reaching consequences for the study of social networks and social evolution.


Assuntos
Relações Interpessoais , Rede Social , Animais
6.
Sensors (Basel) ; 20(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261064

RESUMO

Barometers are among the oldest engineered sensors. Historically, they have been primarily used either as environmental sensors to measure the atmospheric pressure for weather forecasts or as altimeters for aircrafts. With the advent of microelectromechanical system (MEMS)-based barometers and their systematic embedding in smartphones and wearable devices, a vast breadth of new applications for the use of barometers has emerged. For instance, it is now possible to use barometers in conjunction with other sensors to track and identify a wide range of human activity classes. However, the effectiveness of barometers in the growing field of human activity recognition critically hinges on our understanding of the numerous factors affecting the atmospheric pressure, as well as on the properties of the sensor itself-sensitivity, accuracy, variability, etc. This review article thoroughly details all these factors and presents a comprehensive report of the numerous studies dealing with one or more of these factors in the particular framework of human activity tracking and recognition. In addition, we specifically collected some experimental data to illustrate the effects of these factors, which we observed to be in good agreement with the findings in the literature. We conclude this review with some suggestions on some possible future uses of barometric sensors for the specific purpose of tracking human activities.


Assuntos
Sistemas Microeletromecânicos , Monitorização Fisiológica , Dispositivos Eletrônicos Vestíveis , Atividades Humanas , Humanos , Smartphone
7.
Phys Rev Lett ; 121(22): 228301, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547619

RESUMO

Many complex systems find a convenient representation in terms of networks: structures made by pairwise interactions (links) of elements (nodes). For many biological and social systems, elementary interactions involve, however, more than two elements, and simplicial complexes are more adequate to describe such phenomena. Moreover, these interactions often change over time. Here, we propose a framework to model such an evolution: the simplicial activity driven model, in which the building block is a simplex of nodes representing a multiagent interaction. We show analytically and numerically that the use of simplicial structures leads to crucial structural differences with respect to the activity driven model, a paradigmatic temporal network model involving only binary interactions. It also impacts the outcome of paradigmatic processes modeling disease propagation or social contagion. In particular, fluctuations in the number of nodes involved in the interactions can affect the outcome of models of simple contagion processes, contrarily to what happens in the activity driven model.

8.
PLoS Comput Biol ; 12(6): e1005002, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27341027

RESUMO

Social interactions shape the patterns of spreading processes in a population. Techniques such as diaries or proximity sensors allow to collect data about encounters and to build networks of contacts between individuals. The contact networks obtained from these different techniques are however quantitatively different. Here, we first show how these discrepancies affect the prediction of the epidemic risk when these data are fed to numerical models of epidemic spread: low participation rate, under-reporting of contacts and overestimation of contact durations in contact diaries with respect to sensor data determine indeed important differences in the outcomes of the corresponding simulations with for instance an enhanced sensitivity to initial conditions. Most importantly, we investigate if and how information gathered from contact diaries can be used in such simulations in order to yield an accurate description of the epidemic risk, assuming that data from sensors represent the ground truth. The contact networks built from contact sensors and diaries present indeed several structural similarities: this suggests the possibility to construct, using only the contact diary network information, a surrogate contact network such that simulations using this surrogate network give the same estimation of the epidemic risk as simulations using the contact sensor network. We present and compare several methods to build such surrogate data, and show that it is indeed possible to obtain a good agreement between the outcomes of simulations using surrogate and sensor data, as long as the contact diary information is complemented by publicly available data describing the heterogeneity of the durations of human contacts.


Assuntos
Busca de Comunicante , Epidemias , Relações Interpessoais , Modelos Teóricos , Biologia Computacional , Simulação por Computador , Humanos , Risco , Instituições Acadêmicas
9.
BMC Infect Dis ; 16: 341, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27449511

RESUMO

BACKGROUND: Studies measuring contact networks have helped to improve our understanding of infectious disease transmission. However, several methodological issues are still unresolved, such as which method of contact measurement is the most valid. Further, complete network analysis requires data from most, ideally all, members of a network and, to achieve this, acceptance of the measurement method. We aimed at investigating measurement error by comparing two methods of contact measurement - paper diaries vs. wearable proximity sensors - that were applied concurrently to the same population, and we measured acceptability. METHODS: We investigated the contact network of one day of an epidemiology conference in September 2014. Seventy-six participants wore proximity sensors throughout the day while concurrently recording their contacts with other study participants in a paper-diary; they also reported on method acceptability. RESULTS: There were 329 contact reports in the paper diaries, corresponding to 199 contacts, of which 130 were noted by both parties. The sensors recorded 316 contacts, which would have resulted in 632 contact reports if there had been perfect concordance in recording. We estimated the probabilities that a contact was reported in a diary as: P = 72 % for <5 min contact duration (significantly lower than the following, p < 0.05), P = 86 % for 5-15 min, P = 89 % for 15-60 min, and P = 94 % for >60 min. The sets of sensor-measured and self-reported contacts had a large intersection, but neither was a subset of the other. Participants' aggregated contact duration was mostly substantially longer in the diary data than in the sensor data. Twenty percent of respondents (>1 reported contact) stated that filling in the diary was too much work, 25 % of respondents reported difficulties in remembering contacts, and 93 % were comfortable having their conference contacts measured by sensors. CONCLUSION: Reporting and recording were not complete; reporting was particularly incomplete for contacts <5 min. The types of contact that both methods are capable of detecting are partly different. Participants appear to have overestimated the duration of their contacts. Conducting a study with diaries or wearable sensors was acceptable to and mostly easily done by participants. Both methods can be applied meaningfully if their specific limitations are considered and incompleteness is accounted for.


Assuntos
Actigrafia/instrumentação , Atitude , Técnicas Biossensoriais/instrumentação , Busca de Comunicante/métodos , Prontuários Médicos , Autorrelato , Adulto , Congressos como Assunto , Família , Feminino , Monitores de Aptidão Física , Humanos , Masculino , Pessoa de Meia-Idade , Aplicativos Móveis , Apoio Social , Inquéritos e Questionários , Adulto Jovem
10.
BMC Infect Dis ; 16(1): 676, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27842507

RESUMO

BACKGROUND: The homogeneous mixing assumption is widely adopted in epidemic modelling for its parsimony and represents the building block of more complex approaches, including very detailed agent-based models. The latter assume homogeneous mixing within schools, workplaces and households, mostly for the lack of detailed information on human contact behaviour within these settings. The recent data availability on high-resolution face-to-face interactions makes it now possible to assess the goodness of this simplified scheme in reproducing relevant aspects of the infection dynamics. METHODS: We consider empirical contact networks gathered in different contexts, as well as synthetic data obtained through realistic models of contacts in structured populations. We perform stochastic spreading simulations on these contact networks and in populations of the same size under a homogeneous mixing hypothesis. We adjust the epidemiological parameters of the latter in order to fit the prevalence curve of the contact epidemic model. We quantify the agreement by comparing epidemic peak times, peak values, and epidemic sizes. RESULTS: Good approximations of the peak times and peak values are obtained with the homogeneous mixing approach, with a median relative difference smaller than 20 % in all cases investigated. Accuracy in reproducing the peak time depends on the setting under study, while for the peak value it is independent of the setting. Recalibration is found to be linear in the epidemic parameters used in the contact data simulations, showing changes across empirical settings but robustness across groups and population sizes. CONCLUSIONS: An adequate rescaling of the epidemiological parameters can yield a good agreement between the epidemic curves obtained with a real contact network and a homogeneous mixing approach in a population of the same size. The use of such recalibrated homogeneous mixing approximations would enhance the accuracy and realism of agent-based simulations and limit the intrinsic biases of the homogeneous mixing.


Assuntos
Busca de Comunicante/métodos , Epidemias , Modelos Biológicos , Simulação por Computador , Características da Família , Humanos , Densidade Demográfica , Instituições Acadêmicas , Processos Estocásticos , Local de Trabalho
11.
BMC Infect Dis ; 14: 695, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25595123

RESUMO

BACKGROUND: School environments are thought to play an important role in the community spread of infectious diseases such as influenza because of the high mixing rates of school children. The closure of schools has therefore been proposed as an efficient mitigation strategy. Such measures come however with high associated social and economic costs, making alternative, less disruptive interventions highly desirable. The recent availability of high-resolution contact network data from school environments provides an opportunity to design models of micro-interventions and compare the outcomes of alternative mitigation measures. METHODS AND RESULTS: We model mitigation measures that involve the targeted closure of school classes or grades based on readily available information such as the number of symptomatic infectious children in a class. We focus on the specific case of a primary school for which we have high-resolution data on the close-range interactions of children and teachers. We simulate the spread of an influenza-like illness in this population by using an SEIR model with asymptomatics, and compare the outcomes of different mitigation strategies. We find that targeted class closure affords strong mitigation effects: closing a class for a fixed period of time--equal to the sum of the average infectious and latent durations--whenever two infectious individuals are detected in that class decreases the attack rate by almost 70% and significantly decreases the probability of a severe outbreak. The closure of all classes of the same grade mitigates the spread almost as much as closing the whole school. CONCLUSIONS: Our model of targeted class closure strategies based on readily available information on symptomatic subjects and on limited information on mixing patterns, such as the grade structure of the school, shows that these strategies might be almost as effective as whole-school closure, at a much lower cost. This may inform public health policies for the management and mitigation of influenza-like outbreaks in the community.


Assuntos
Surtos de Doenças/prevenção & controle , Influenza Humana/prevenção & controle , Instituições Acadêmicas/organização & administração , Criança , Controle de Doenças Transmissíveis , Infecções Comunitárias Adquiridas/prevenção & controle , Humanos , Influenza Humana/epidemiologia , Modelos Estatísticos , Risco
12.
Phys Rev Lett ; 110(15): 158702, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25167319

RESUMO

We propose a procedure to generate dynamical networks with bursty, possibly repetitive and correlated temporal behaviors. Regarding any weighted directed graph as being composed of the accumulation of paths between its nodes, our construction uses random walks of variable length to produce time-extended structures with adjustable features. The procedure is first described in a general framework. It is then illustrated in a case study inspired by a transportation system for which the resulting synthetic network is shown to accurately mimic the empirical phenomenology.

13.
J Theor Biol ; 337: 89-100, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23871715

RESUMO

Spreading processes represent a very efficient tool to investigate the structural properties of networks and the relative importance of their constituents, and have been widely used to this aim in static networks. Here we consider simple disease spreading processes on empirical time-varying networks of contacts between individuals, and compare the effect of several immunization strategies on these processes. An immunization strategy is defined as the choice of a set of nodes (individuals) who cannot catch nor transmit the disease. This choice is performed according to a certain ranking of the nodes of the contact network. We consider various ranking strategies, focusing in particular on the role of the training window during which the nodes' properties are measured in the time-varying network: longer training windows correspond to a larger amount of information collected and could be expected to result in better performances of the immunization strategies. We find instead an unexpected saturation in the efficiency of strategies based on nodes' characteristics when the length of the training window is increased, showing that a limited amount of information on the contact patterns is sufficient to design efficient immunization strategies. This finding is balanced by the large variations of the contact patterns, which strongly alter the importance of nodes from one period to the next and therefore significantly limit the efficiency of any strategy based on an importance ranking of nodes. We also observe that the efficiency of strategies that include an element of randomness and are based on temporally local information do not perform as well but are largely independent on the amount of information available.


Assuntos
Doenças Transmissíveis/imunologia , Epidemias/prevenção & controle , Imunização , Doenças Transmissíveis/epidemiologia , Humanos , Modelos Biológicos , Análise Numérica Assistida por Computador , Fatores de Tempo
14.
BMC Infect Dis ; 13: 185, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23618005

RESUMO

BACKGROUND: The integration of empirical data in computational frameworks designed to model the spread of infectious diseases poses a number of challenges that are becoming more pressing with the increasing availability of high-resolution information on human mobility and contacts. This deluge of data has the potential to revolutionize the computational efforts aimed at simulating scenarios, designing containment strategies, and evaluating outcomes. However, the integration of highly detailed data sources yields models that are less transparent and general in their applicability. Hence, given a specific disease model, it is crucial to assess which representations of the raw data work best to inform the model, striking a balance between simplicity and detail. METHODS: We consider high-resolution data on the face-to-face interactions of individuals in a pediatric hospital ward, obtained by using wearable proximity sensors. We simulate the spread of a disease in this community by using an SEIR model on top of different mathematical representations of the empirical contact patterns. At the most detailed level, we take into account all contacts between individuals and their exact timing and order. Then, we build a hierarchy of coarse-grained representations of the contact patterns that preserve only partially the temporal and structural information available in the data. We compare the dynamics of the SEIR model across these representations. RESULTS: We show that a contact matrix that only contains average contact durations between role classes fails to reproduce the size of the epidemic obtained using the high-resolution contact data and also fails to identify the most at-risk classes. We introduce a contact matrix of probability distributions that takes into account the heterogeneity of contact durations between (and within) classes of individuals, and we show that, in the case study presented, this representation yields a good approximation of the epidemic spreading properties obtained by using the high-resolution data. CONCLUSIONS: Our results mark a first step towards the definition of synopses of high-resolution dynamic contact networks, providing a compact representation of contact patterns that can correctly inform computational models designed to discover risk groups and evaluate containment policies. We show in a typical case of a structured population that this novel kind of representation can preserve in simulation quantitative features of the epidemics that are crucial for their study and management.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Busca de Comunicante/métodos , Algoritmos , Surtos de Doenças , Hospitais Pediátricos , Humanos , Modelos Teóricos
15.
Phys Rev E ; 107(2-1): 024301, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932592

RESUMO

Temporal networks of face-to-face interactions between individuals are useful proxies of the dynamics of social systems on fast timescales. Several empirical statistical properties of these networks have been shown to be robust across a large variety of contexts. To better grasp the role of various mechanisms of social interactions in the emergence of these properties, models in which schematic implementations of such mechanisms can be carried out have proven useful. Here, we put forward a framework to model temporal networks of human interactions based on the idea of a coevolution and feedback between (i) an observed network of instantaneous interactions and (ii) an underlying unobserved social bond network: Social bonds partially drive interaction opportunities and in turn are reinforced by interactions and weakened or even removed by the lack of interactions. Through this coevolution, we also integrate in the model well-known mechanisms such as triadic closure, but also the impact of shared social context and nonintentional (casual) interactions, with several tunable parameters. We then propose a method to compare the statistical properties of each version of the model with empirical face-to-face interaction data sets to determine which sets of mechanisms lead to realistic social temporal networks within this modeling framework.

16.
Nat Commun ; 14(1): 6223, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37802994

RESUMO

Going beyond networks, to include higher-order interactions of arbitrary sizes, is a major step to better describe complex systems. In the resulting hypergraph representation, tools to identify structures and central nodes are scarce. We consider the decomposition of a hypergraph in hyper-cores, subsets of nodes connected by at least a certain number of hyperedges of at least a certain size. We show that this provides a fingerprint for data described by hypergraphs and suggests a novel notion of centrality, the hypercoreness. We assess the role of hyper-cores and nodes with large hypercoreness in higher-order dynamical processes: such nodes have large spreading power and spreading processes are localized in central hyper-cores. Additionally, in the emergence of social conventions very few committed individuals with high hypercoreness can rapidly overturn a majority convention. Our work opens multiple research avenues, from comparing empirical data to model validation and study of temporally varying hypergraphs.

17.
Cell Rep Methods ; 3(2): 100397, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36936083

RESUMO

The temporal organization of biological systems is key for understanding them, but current methods for identifying this organization are often ad hoc and require prior knowledge. We present Phasik, a method that automatically identifies this multiscale organization by combining time series data (protein or gene expression) and interaction data (protein-protein interaction network). Phasik builds a (partially) temporal network and uses clustering to infer temporal phases. We demonstrate the method's effectiveness by recovering well-known phases and sub-phases of the cell cycle of budding yeast and phase arrests of mutants. We also show its general applicability using temporal gene expression data from circadian rhythms in wild-type and mutant mouse models. We systematically test Phasik's robustness and investigate the effect of having only partial temporal information. As time-resolved, multiomics datasets become more common, this method will allow the study of temporal regulation in lesser-known biological contexts, such as development, metabolism, and disease.


Assuntos
Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Camundongos , Animais , Ciclo Celular/genética , Mapas de Interação de Proteínas/genética , Divisão Celular , Ritmo Circadiano/genética
18.
Proc Natl Acad Sci U S A ; 106(22): 8847-52, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19458042

RESUMO

Many complex systems, including networks, are not static but can display strong fluctuations at various time scales. Characterizing the dynamics in complex networks is thus of the utmost importance in the understanding of these networks and of the dynamical processes taking place on them. In this article, we study the example of the US airport network in the time period 1990-2000. We show that even if the statistical distributions of most indicators are stationary, an intense activity takes place at the local ("microscopic") level, with many disappearing/appearing connections (links) between airports. We find that connections have a very broad distribution of lifetimes, and we introduce a set of metrics to characterize the links' dynamics. We observe in particular that the links that disappear have essentially the same properties as the ones that appear, and that links that connect airports with very different traffic are very volatile. Motivated by this empirical study, we propose a model of dynamical networks, inspired from previous studies on firm growth, which reproduces most of the empirical observations both for the stationary statistical distributions and for the dynamical properties.

19.
Proc Natl Acad Sci U S A ; 106(26): 10511-5, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19506244

RESUMO

The enormous increase of popularity and use of the worldwide web has led in the recent years to important changes in the ways people communicate. An interesting example of this fact is provided by the now very popular social annotation systems, through which users annotate resources (such as web pages or digital photographs) with keywords known as "tags." Understanding the rich emergent structures resulting from the uncoordinated actions of users calls for an interdisciplinary effort. In particular concepts borrowed from statistical physics, such as random walks (RWs), and complex networks theory, can effectively contribute to the mathematical modeling of social annotation systems. Here, we show that the process of social annotation can be seen as a collective but uncoordinated exploration of an underlying semantic space, pictured as a graph, through a series of RWs. This modeling framework reproduces several aspects, thus far unexplained, of social annotation, among which are the peculiar growth of the size of the vocabulary used by the community and its complex network structure that represents an externalization of semantic structures grounded in cognition and that are typically hard to access.


Assuntos
Redes de Comunicação de Computadores , Armazenamento e Recuperação da Informação/métodos , Internet , Bases de Dados Factuais , Humanos , Semântica
20.
J R Soc Interface ; 19(191): 20220164, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730172

RESUMO

Computational models offer a unique setting to test strategies to mitigate the spread of infectious diseases, providing useful insights to applied public health. To be actionable, models need to be informed by data, which can be available at different levels of detail. While high-resolution data describing contacts between individuals are increasingly available, data gathering remains challenging, especially during a health emergency. Many models thus use synthetic data or coarse information to evaluate intervention protocols. Here, we evaluate how the representation of contact data might affect the impact of various strategies in models, in the realm of COVID-19 transmission in educational and work contexts. Starting from high-resolution contact data, we use detailed to coarse data representations to inform a model of SARS-CoV-2 transmission and simulate different mitigation strategies. We find that coarse data representations estimate a lower risk of superspreading events. However, the rankings of protocols according to their efficiency or cost remain coherent across representations, ensuring the consistency of model findings to inform public health advice. Caution should be taken, however, on the quantitative estimations of those benefits and costs triggering the adoption of protocols, as these may depend on data representation.


Assuntos
COVID-19 , Doenças Transmissíveis , COVID-19/epidemiologia , Doenças Transmissíveis/epidemiologia , Humanos , Modelos Teóricos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA