Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(14): e2104496119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344428

RESUMO

SignificancePhysical and chemical properties of individual atmospheric particles determine their climate impacts. Hygroscopic inorganic salt particles mixed with trace amounts of organic material are predicted to be liquid under typical tropospheric conditions in the summertime Arctic. Yet, we unexpectedly observed a significant concentration of solid particles composed of ammonium sulfate with an organic coating under conditions of high relative humidity and low temperature. These particle properties are consistent with marine biogenic-derived new particle formation and growth, with particle collision hypothesized to result in the solid phase. This particle source is predicted to have increasing relevance in the context of declining Arctic sea ice and increasing open water, with impacts on clouds, and therefore climate.

2.
Atmos Environ (1994) ; 2442021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414674

RESUMO

Understanding the drivers for high ozone (O3) and atmospheric particulate matter (PM) concentrations is a pressing issue in urban air quality, as this understanding informs decisions for control and mitigation of these key pollutants. The Houston, TX metropolitan area is an ideal location for studying the intersection between O3 and atmospheric secondary organic carbon (SOC) production due to the diversity of source types (urban, industrial, and biogenic) and the on- and off-shore cycling of air masses over Galveston Bay, TX. Detailed characterization of filter-based samples collected during Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Houston field experiment in September 2013 were used to investigate sources and composition of organic carbon (OC) and potential relationships between daily maximum 8 h average O3 and PM. The current study employed a novel combination of chemical mass balance modeling defining primary (i.e. POC) versus secondary (i.e. SOC) organic carbon and radiocarbon (14C) for apportionment of contemporary and fossil carbon. The apportioned sources include contemporary POC (biomass burning [BB], vegetative detritus), fossil POC (motor vehicle exhaust), biogenic SOC and fossil SOC. The filter-based results were then compared with real-time measurements by aerosol mass spectrometry. With these methods, a consistent urban background of contemporary carbon and motor vehicle exhaust was observed in the Houston metropolitan area. Real-time and filter-based characterization both showed that carbonaceous aerosols in Houston was highly impacted by SOC or oxidized OC, with much higher contributions from biogenic than fossil sources. However, fossil SOC concentration and fractional contribution had a stronger correlation with daily maximum 8 h average O3, peaking during high PM and O3 events. The results indicate that point source emissions processed by on- and off-shore wind cycles likely contribute to peak events for both PM and O3 in the greater Houston metropolitan area.

3.
Environ Sci Technol ; 53(17): 10092-10101, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31403775

RESUMO

Urban trees could represent important short- and long-term landscape sinks for elemental carbon (EC). Therefore, we quantified foliar EC accumulation by two widespread oak tree species-Quercus stellata (post oak) and Quercus virginiana (live oak)-as well as leaf litterfall EC flux to soil from April 2017 to March 2018 in the City of Denton, Texas, within the Dallas-Fort Worth metropolitan area. Post oak trees accumulated 1.9-fold more EC (299 ± 45 mg EC m-2 canopy yr-1) compared to live oak trees (160 ± 31 mg EC m-2 canopy yr-1). However, in the fall, these oak species converged in their EC accumulation rates, with ∼70% of annual accumulation occurring during fall and on leaf surfaces. The flux of EC to the ground via leaf litterfall mirrored leaf-fall patterns, with post oaks and live oaks delivering ∼60% of annual leaf litterfall EC in fall and early spring, respectively. We estimate that post oak and live oak trees in this urban ecosystem potentially accumulate 3.5 t EC yr-1, equivalent to ∼32% of annual vehicular EC emissions from the city. Thus, city trees are significant sinks for EC and represent potential avenues for climate and air quality mitigation in urban areas.


Assuntos
Quercus , Carbono , Cidades , Ecossistema , Fuligem , Texas , Árvores
4.
J Air Waste Manag Assoc ; 64(8): 917-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25185394

RESUMO

Rural and background sites provide valuable information on the concentration and optical properties of organic, elemental, and water-soluble organic carbon (OC, EC, and WSOC), which are relevant for understanding the climate forcing potential of regional atmospheric aerosols. To quantify climate- and air quality-relevant characteristics of carbonaceous aerosol in the central United States, a regional background site in central Texas was chosen for long-term measurement. Back trajectory (BT) analysis, ambient OC, EC, and WSOC concentrations and absorption parameters are reported for the first 15 months of a long-term campaign (May 2011-August 2012). BT analysis indicates consistent north-south airflow connecting central Texas to the Central Plains. Central Texas aerosols exhibited seasonal trends with increased fine particulate matter (< 2.5 microm aerodynamic diameter, PM2.5) and OC during the summer (PM2.5 = 10.9 microg m(-3) and OC = 3.0 microg m(-3)) and elevated EC during the winter (0.22 microg m(-3)). When compared to measurements in Dallas and Houston, TX, central Texas OC appears to have mixed urban and rural sources. However central Texas EC appears to be dominated by transport of urban emissions. WSOC averaged 63% of the annual OC, with little seasonal variability in this ratio. To monitor brown carbon (BrC), absorption was measured for the aqueous WSOC extracts. Light absorption coefficients for EC and BrC were highest during summer (EC MAC = 11 m2 g(-1) and BRC MAE365 = 0.15 m2 g(-1)). Results from optical analysis indicate that regional aerosol absorption is mostly due to EC with summertime peaks in BrC attenuation. This study represents the first reported values of WSOC absorption, MAE365, for the central United States. Implications: Background concentration and absorption measurements are essential in determining regional potential radiative forcing due to atmospheric aerosols. Back trajectory, chemical, and optical analysis of PM2.5 was used to determine climatic and air quality implications of urban outflow to a regional receptor site, representative of the central United States. Results indicate that central Texas organic carbon has mixed urban and rural sources, while elemental carbon is controlled by the transport of urban emissions. Analysis of aerosol absorption showed black carbon as the dominant absorber, with less brown carbon absorption than regional studies in California and the southeastern United States.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Absorção , Cidades , Filtração , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Espectrofotometria Ultravioleta , Texas
5.
Sci Total Environ ; 831: 154641, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35307446

RESUMO

As the Arctic continues to change and warm rapidly, it is increasingly important to understand the organic carbon (OC) contribution to Arctic aerosol. Biogenic sources of primary and secondary OC in the Arctic will be impacted by climate change, including warming temperatures and earlier snow and ice melt. This study focuses on identifying potential sources and regional influences on the seasonal concentration of organic aerosol through analysis of chemical and isotopic composition. Aerosol samples were collected at two sites on the North Slope of Alaska (Utqiagvik, UQK, and Oliktok Point, OLK, which is in an Arctic oilfield) over three summers from 2015 to 2017. The elemental carbon (EC) trends at each site were used to understand local combustion influences. Local sources drove EC concentrations at Oliktok Point, where high EC was attributed to oil and gas extraction activity, including diesel combustion emissions. Utqiagvik had very low EC in the summer. OC was more similar in concentration and well correlated between the two sites with high contributions of contemporary carbon by radiocarbon apportionment (UQK = 74%, OLK = 63%), which could include both marine and terrestrial sources of contemporary carbon (e.g. primary and secondary biogenic, biomass burning and/or associated SOA, and bioaerosols). OC concentrations are strongly correlated to maximum ambient temperatures on the NSA during the summer, which may have implications for predicting future OC aerosol concentrations in a warming Arctic. Biomass burning was determined to be an episodic influence at both sites, based on interpretation of combined aerosol composition, air mass trajectories, and remote sensing of smoke plumes. The results from this study overall strongly suggests contribution from regional sources of contemporary organic aerosol on the NSA, but additional analysis is needed to better constrain contributions from both biogenic sources (terrestrial and/or marine) and bioaerosol to better understand temperature-related aerosol processes in the Arctic.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Alaska , Biomassa , Carbono/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Estações do Ano
6.
Environ Pollut ; 314: 120197, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189483

RESUMO

Urban tree canopies are a significant sink for atmospheric elemental carbon (EC)--an air pollutant that is a powerful climate-forcing agent and threat to human health. Understanding what controls EC deposition to urban trees is therefore important for evaluating the potential role of vegetation in air pollution mitigation strategies. We estimated wet, dry, and throughfall EC deposition for oak trees at 53 sites in Denton, TX. Spatial data and airborne discrete-return LiDAR were used to compute predictors of EC deposition, including urban form characteristics, and meteorologic and topographic factors. Dry and throughfall EC deposition varied 14-fold across this urban ecosystem and exhibited significant variability from spring to fall. Generalized additive modeling and multiple linear regression analyses showed that urban form strongly influenced tree-scale variability in dry EC deposition: traffic count as well as road length and building height within 100-150 m of trees were positively related to leaf-scale dry deposition. Rainfall amount and extreme wind-driven rain from the direction of major pollution sources were significant drivers of throughfall EC. Our findings indicate that complex configurations of roads, buildings, and vegetation produce "urban edge trees" that contribute to heterogeneous EC deposition patterns across urban systems, with implications for greenspace planning.


Assuntos
Poluentes Atmosféricos , Árvores , Humanos , Solo , Ecossistema , Meteorologia , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA