Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(7): 1263-1275.e14, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622511

RESUMO

Sepsis is an often lethal syndrome resulting from maladaptive immune and metabolic responses to infection, compromising host homeostasis. Disease tolerance is a defense strategy against infection that preserves host homeostasis without exerting a direct negative impact on pathogens. Here, we demonstrate that induction of the iron-sequestering ferritin H chain (FTH) in response to polymicrobial infections is critical to establish disease tolerance to sepsis. The protective effect of FTH is exerted via a mechanism that counters iron-driven oxidative inhibition of the liver glucose-6-phosphatase (G6Pase), and in doing so, sustains endogenous glucose production via liver gluconeogenesis. This is required to prevent the development of hypoglycemia that otherwise compromises disease tolerance to sepsis. FTH overexpression or ferritin administration establish disease tolerance therapeutically. In conclusion, disease tolerance to sepsis relies on a crosstalk between adaptive responses controlling iron and glucose metabolism, required to maintain blood glucose within a physiologic range compatible with host survival.


Assuntos
Glucose/metabolismo , Ferro/metabolismo , Sepse/metabolismo , Animais , Apoferritinas/genética , Apoferritinas/metabolismo , Ceruloplasmina/metabolismo , Gluconeogênese , Glucose-6-Fosfatase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
2.
Mol Cell ; 70(1): 106-119.e10, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625032

RESUMO

A current challenge in cell motility studies is to understand the molecular and physical mechanisms that govern chemokine receptor nanoscale organization at the cell membrane, and their influence on cell response. Using single-particle tracking and super-resolution microscopy, we found that the chemokine receptor CXCR4 forms basal nanoclusters in resting T cells, whose extent, dynamics, and signaling strength are modulated by the orchestrated action of the actin cytoskeleton, the co-receptor CD4, and its ligand CXCL12. We identified three CXCR4 structural residues that are crucial for nanoclustering and generated an oligomerization-defective mutant that dimerized but did not form nanoclusters in response to CXCL12, which severely impaired signaling. Overall, our data provide new insights to the field of chemokine biology by showing that receptor dimerization in the absence of nanoclustering is unable to fully support CXCL12-mediated responses, including signaling and cell function in vivo.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Nanopartículas , Receptores CXCR4/metabolismo , Linfócitos T/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/imunologia , Motivos de Aminoácidos , Animais , Antígenos CD4/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/imunologia , Quimiocina CXCL12/farmacologia , Células HEK293 , Humanos , Células Jurkat , Ligantes , Camundongos Endogâmicos C57BL , Mutação , Multimerização Proteica , Transporte Proteico , Receptores CXCR4/efeitos dos fármacos , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Transdução de Sinais , Imagem Individual de Molécula , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
3.
Anal Chem ; 95(27): 10430-10437, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37367956

RESUMO

Herein, we introduce the first relative single-particle inductively coupled plasma mass spectrometry (spICP-MS) approach where size calibration is carried out using the target NP itself measured under different instrumental conditions without external dependence on the complex and prone-to-error determination of transport efficiency or mass flux calibrations, in contrast to most spICP-MS approaches. The simple approach proposed allows determining gold nanoparticle (AuNP) sizes, with errors ranging from 0.3 to 3.1% (corroborated by HR-TEM). It has been demonstrated that the changes observed in the single-particle histograms obtained for a suspension of AuNPs under different sensitivity conditions (n = 5) are directly and exclusively related to the mass (size) of the target AuNP itself. Interestingly, the relative nature of the approach shows that once the ICP-MS system has been calibrated with a generic NP standard, it is no longer necessary to repeat the calibration for the size determination of different unimetallic NPs carried out along time (at least 8 months), independently of their size (16-73 nm) and even nature (AuNP or AgNP). Additionally, neither the NP surface functionalization with biomolecules nor protein corona formation led to significant changes (relative errors slightly increased 1.3- to 1.5-fold, up to 7%) in the NP size determination, in contrast to conventional spICP-MS approaches where relative errors increased 2- to 8-fold, up to 32%. This feature could be especially valuable for the analysis of NPs in real samples without the need of matrix-matched calibration.

4.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768512

RESUMO

Cholesterol efflux capacity (CEC) is of interest given its potential relationship with several important clinical conditions including Alzheimer's disease. The inactivation of the APOE locus in mouse models supports the idea that it is involved in determining the CEC. With that in mind, we examine the impact of the plasma metabolome profile and the APOE genotype on the CEC in cognitively healthy elderly subjects. The study subjects were 144 unrelated healthy individuals. The plasma CEC was determined by exposing cultured mouse macrophages treated with BODIPY-cholesterol to human plasma. The metabolome profile was determined using NMR techniques. Multiple regression was performed to identify the most important predictors of CEC, as well as the NMR features most strongly associated with the APOE genotype. Plasma 3-hydroxybutyrate was the variable most strongly correlated with the CEC (r = 0.365; p = 7.3 × 10-6). Male sex was associated with a stronger CEC (r = -0.326, p = 6.8 × 10-5). Most of the NMR particles associated with the CEC did not correlate with the APOE genotype. The NMR metabolomics results confirmed the APOE genotype to have a huge effect on the concentration of plasma lipoprotein particles as well as those of other molecules including omega-3 fatty acids. In conclusion, the CEC of human plasma was associated with ketone body concentration, sex, and (to a lesser extent) the other features of the plasma lipoprotein profile. The APOE genotype exerted only a weak effect on the CEC via the modulation of the lipoprotein profile. The APOE locus was associated with omega-3 fatty acid levels independent of the plasma cholesterol level.


Assuntos
Colesterol , Jejum , Animais , Camundongos , Humanos , Masculino , Adulto , Idoso , Espectroscopia de Ressonância Magnética , Genótipo , Apolipoproteínas E/genética , HDL-Colesterol
5.
Proc Natl Acad Sci U S A ; 116(12): 5681-5686, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833408

RESUMO

Malaria, the disease caused by Plasmodium spp. infection, remains a major global cause of morbidity and mortality. Host protection from malaria relies on immune-driven resistance mechanisms that kill Plasmodium However, these mechanisms are not sufficient per se to avoid the development of severe forms of disease. This is accomplished instead via the establishment of disease tolerance to malaria, a defense strategy that does not target Plasmodium directly. Here we demonstrate that the establishment of disease tolerance to malaria relies on a tissue damage-control mechanism that operates specifically in renal proximal tubule epithelial cells (RPTEC). This protective response relies on the induction of heme oxygenase-1 (HMOX1; HO-1) and ferritin H chain (FTH) via a mechanism that involves the transcription-factor nuclear-factor E2-related factor-2 (NRF2). As it accumulates in plasma and urine during the blood stage of Plasmodium infection, labile heme is detoxified in RPTEC by HO-1 and FTH, preventing the development of acute kidney injury, a clinical hallmark of severe malaria.


Assuntos
Heme/metabolismo , Rim/metabolismo , Malária/fisiopatologia , Animais , Apoferritinas/metabolismo , Linhagem Celular , Progressão da Doença , Células Epiteliais/metabolismo , Ferritinas/metabolismo , Ferritinas/fisiologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/fisiologia , Humanos , Tolerância Imunológica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Oxirredutases , Plasmodium berghei/metabolismo , Plasmodium berghei/parasitologia , Regulação para Cima
7.
Anal Chem ; 92(19): 13500-13508, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32842726

RESUMO

Inductively coupled plasma-mass spectrometry (ICP-MS) has been widely used in Life Sciences for the absolute quantification of biomolecules without specific standards, assuming the same response for generic compounds including complex biomolecules. However, contradictory results have been published on this regard. We present the first critical statistical comparison of the ICP-MS response factors obtained for 14 different relevant S-containing biomolecules (three peptides, four proteins, one amino acid, two cofactors, three polyethylene glycol (PEG) derivatives, and sulfate standard), covering a wide range of hydrophobicities and molecular sizes. Two regular flow nebulizers and a total consumption nebulizer (TCN) were tested. ICP-MS response factors were determined though calibration curves, and isotope dilution analysis was used to normalize the results. No statistical differences have been found for low-molecular-weight biocompounds, PEGs, and nonhydrophobic peptides using any of the nebulizers tested. Interestingly, while statistical differences were still found negligible (96-104%) for the proteins and hydrophobic peptide using the TCN, significantly lower response factors (87-40%) were obtained using regular flow nebulizers. Such differential behavior seems to be related mostly to hydrophobicity and partially to the molecular weight. Findings were validated using IDA in intact and digested bovine serum albumin solutions using the TCN (98 and 100%, respectively) and the concentric nebulizer (73 and 97%, respectively). Additionally, in the case of a phosphoprotein, results were corroborated using the P trace in parallel to the S trace used along the manuscript. This work seems to suggest that ICP-MS operated with regular nebulizers can offer absolute quantification using generic standards for most biomolecules except proteins and hydrophobic peptides.


Assuntos
Aminoácidos/análise , Disciplinas das Ciências Biológicas , Peptídeos/análise , Polietilenoglicóis/análise , Proteínas/análise , Sulfatos/análise , Espectrometria de Massas
8.
Sensors (Basel) ; 20(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947809

RESUMO

A major challenge in the development of bioanalytical methods is to achieve a rapid and robust quantification of disease biomarkers present at very low concentration levels in complex biological samples. An immunoassay platform is presented herein for ultrasensitive and fast detection of the prostate-specific antigen (PSA), a well-recognized cancer biomarker. A sandwich type immunosensor has been developed employing a detection antibody labeled with inorganic nanoparticles acting as tags for further indirect quantification of the analyte. The required high sensitivity is then achieved through a controlled gold deposition on the nanoparticle surface, carried out after completing the recognition step of the immunoassay, thus effectively amplifying the size of the nanoparticles from nm to µm range. Due to such an amplification procedure, quantification of the biomolecule could be carried out directly on the immunoassay plates using confocal microscopy for measurement of the reflected light produced by gold-enlarged nanostructures. The high specificity of the immunoassay was demonstrated with the addition of a major abundant protein in serum (albumin) at much higher concentrations. An extremely low detection limit for PSA quantification (LOD of 1.1 fg·mL-1 PSA) has been achieved. Such excellent LOD is 2-3 orders of magnitude lower than the clinically relevant PSA levels present in biological samples (4-10 ng·mL-1) and even to monitor eventual recurrence after clinical treatment of a prostate tumor (0.1 ng·mL-1). In fact, the broad dynamic range obtained (4 orders of magnitude) would allow the PSA quantification of diverse samples at very different relevant levels.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Nanopartículas Metálicas , Antígeno Prostático Específico/análise , Ouro , Humanos , Limite de Detecção , Masculino
9.
Phys Chem Chem Phys ; 20(3): 2104-2112, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29302663

RESUMO

The splitting of water into molecular hydrogen and oxygen with the use of renewable solar energy is considered one of the most promising routes to yield sustainable fuel. Herein, we report the H2 evolution performance of gallium doped TiO2 photocatalysts with varying degrees of Ga dopant. The gallium(iii) ions induced significant changes in the structural, textural and electronic properties of TiO2 nanoparticles, resulting in remarkably enhanced photocatalytic activity and good stability for H2 production. Ga3+ ions can act as hole traps that enable a large number of excited electrons to migrate towards the TiO2 surface, thereby facilitating electron transfer and charge separation. Additionally, the cationic dopant and its induced defects might introduce a mid-gap state, promoting electron migration and prolonging the lifetime of charge carrier pairs. We have discovered that the optimal Ga dopant concentration was 3.125 at% and that the incorporation of platinum (0.5 wt%) as a co-catalyst further improved the H2 evolution rate up to 5722 µmol g-1 h-1. Pt not only acts as an electron sink, drastically increasing the electron/hole pair lifetime, but it also creates an intimate contact at the heterojunction between Pt and Ga-TiO2, thus improving the interfacial electron transfer process. These catalyst design strategies provide new ways of designing transition metal photocatalysts that improve green fuel production from renewable solar energy and water.

10.
PLoS Pathog ; 11(3): e1004706, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25768794

RESUMO

The role of IL-1ß and IL-18 during lung infection with the gram-negative bacterium Francisella tularensis LVS has not been characterized in detail. Here, using a mouse model of pneumonic tularemia, we show that both cytokines are protective, but through different mechanisms. Il-18-/- mice quickly succumb to the infection and showed higher bacterial burden in organs and lower level of IFNγ in BALF and serum compared to wild type C57BL/6J mice. Administration of IFNγ rescued the survival of Il-18-/- mice, suggesting that their decreased resistance to tularemia is due to inability to produce IFNγ. In contrast, mice lacking IL-1 receptor or IL-1ß, but not IL-1α, appeared to control the infection in its early stages, but eventually succumbed. IFNγ administration had no effect on Il-1r1-/- mice survival. Rather, Il-1r1-/- mice were found to have significantly reduced titer of Ft LPS-specific IgM. The anti-Ft LPS IgM was generated in a IL-1ß-, TLR2-, and ASC-dependent fashion, promoted bacteria agglutination and phagocytosis, and was protective in passive immunization experiments. B1a B cells produced the anti-Ft LPS IgM and these cells were significantly decreased in the spleen and peritoneal cavity of infected Il-1b-/- mice, compared to C57BL/6J mice. Collectively, our results show that IL-1ß and IL-18 activate non-redundant protective responses against tularemia and identify an essential role for IL-1ß in the rapid generation of pathogen-specific IgM by B1a B cells.


Assuntos
Anticorpos Antibacterianos/imunologia , Subpopulações de Linfócitos B/imunologia , Imunoglobulina M/imunologia , Interleucina-1beta/imunologia , Tularemia/imunologia , Animais , Western Blotting , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções Respiratórias/imunologia
11.
PLoS Pathog ; 10(8): e1004327, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25166912

RESUMO

Two distinct defense strategies can protect the host from infection: resistance is the ability to destroy the infectious agent, and tolerance is the ability to withstand infection by minimizing the negative impact it has on the host's health without directly affecting pathogen burden. Burkholderia pseudomallei is a Gram-negative bacterium that infects macrophages and causes melioidosis. We have recently shown that inflammasome-triggered pyroptosis and IL-18 are equally important for resistance to B. pseudomallei, whereas IL-1ß is deleterious. Here we show that the detrimental role of IL-1ß during infection with B. pseudomallei (and closely related B. thailandensis) is due to excessive recruitment of neutrophils to the lung and consequent tissue damage. Mice deficient in the potentially damaging enzyme neutrophil elastase were less susceptible than the wild type C57BL/6J mice to infection, although the bacterial burdens in organs and the extent of inflammation were comparable between C57BL/6J and elastase-deficient mice. In contrast, lung tissue damage and vascular leakage were drastically reduced in elastase-deficient mice compared to controls. Bradykinin levels were higher in C57BL/6 than in elastase-deficient mice; administration of a bradykinin antagonist protected mice from infection, suggesting that increased vascular permeability mediated by bradykinin is one of the mechanisms through which elastase decreases host tolerance to melioidosis. Collectively, these results demonstrate that absence of neutrophil elastase increases host tolerance, rather than resistance, to infection by minimizing host tissue damage.


Assuntos
Infecções por Burkholderia/imunologia , Interações Hospedeiro-Parasita/imunologia , Elastase de Leucócito/imunologia , Elastase de Leucócito/metabolismo , Infecções Respiratórias/imunologia , Animais , Western Blotting , Infecções por Burkholderia/enzimologia , Modelos Animais de Doenças , Citometria de Fluxo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções Respiratórias/enzimologia , Infecções Respiratórias/microbiologia
12.
J Immunol ; 191(7): 3867-75, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23997213

RESUMO

B cells use a plethora of TLR to recognize pathogen-derived ligands. These innate signals have an important function in the B cell adaptive immune response and modify their trafficking and tissue location. The direct role of TLR signaling on B cell dynamics nonetheless remains almost entirely unknown. In this study, we used a state-of-the-art two-dimensional model combined with real-time microscopy to study the effect of TLR4 stimulation on mouse B cell motility in response to chemokines. We show that a minimum stimulation period is necessary for TLR4 modification of B cell behavior. TLR4 stimulation increased B cell polarization, migration, and directionality; these increases were dependent on the MyD88 signaling pathway and did not require ERK or p38 MAPK activity downstream of TLR4. In addition, TLR4 stimulation enhanced Rac GTPase activity and promoted sustained Rac activation in response to chemokines. These results increase our understanding of the regulation of B cell dynamics by innate signals and the underlying molecular mechanisms.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Quimiocina CXCL13/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lipopolissacarídeos/imunologia , Camundongos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
J Immunol ; 191(5): 2742-51, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23872053

RESUMO

Lymphocytes use integrin-based platforms to move and adhere firmly to the surface of other cells. The molecular mechanisms governing lymphocyte adhesion dynamics are however poorly understood. In this study, we show that in mouse B lymphocytes, the actin binding protein vinculin localizes to the ring-shaped integrin-rich domain of the immune synapse (IS); the assembly of this platform, triggered by cognate immune interactions, is needed for chemokine-mediated B cell motility arrest and leads to firm, long-lasting B cell adhesion to the APC. Vinculin is recruited early in IS formation, in parallel to a local phosphatidylinositol (4,5)-bisphosphate wave, and requires spleen tyrosine kinase activity. Lack of vinculin at the IS impairs firm adhesion, promoting, in turn, cell migration with Ag clustered at the uropod. Vinculin localization to the B cell contact area depends on actomyosin. These results identify vinculin as a major controller of integrin-mediated adhesion dynamics in B cells.


Assuntos
Linfócitos B/metabolismo , Quimiotaxia de Leucócito/fisiologia , Sinapses Imunológicas/metabolismo , Integrinas/metabolismo , Vinculina/metabolismo , Animais , Linfócitos B/imunologia , Western Blotting , Adesão Celular/imunologia , Imunofluorescência , Sinapses Imunológicas/imunologia , Integrinas/imunologia , Ativação Linfocitária/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vinculina/imunologia
14.
Cytotherapy ; 16(12): 1692-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25240680

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells hold special interest for cell-based therapy because of their tissue-regenerative and immunosuppressive abilities. B-cell involvement in chronic inflammatory and autoimmune pathologies makes them a desirable target for cell-based therapy. Mesenchymal stromal cells are able to regulate B-cell function; although the mechanisms are little known, they imply cell-to-cell contact. METHODS: We studied the ability of human adipose tissue-derived mesenchymal stromal cells (ASCs) to attract B cells. RESULTS: We show that ASCs promote B-cell migration through the secretion of chemotactic factors. Inflammatory/innate signals do not modify ASC capacity to mediate B-cell motility and chemotaxis. Analysis of a panel of B cell-related chemokines showed that none of them appeared to be responsible for B-cell motility. Other ASC-secreted factors able to promote cell motility and chemotaxis, such as the cytokine interleukin-8 and prostaglandin E2, did not appear to be implicated. CONCLUSIONS: We propose that ASC promotion of B-cell migration by undefined secreted factors is crucial for ASC regulation of B-cell responses.


Assuntos
Tecido Adiposo/metabolismo , Linfócitos B/metabolismo , Quimiotaxia , Dinoprostona/metabolismo , Interleucina-8/metabolismo , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Linfócitos B/citologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia
15.
Talanta ; 275: 126095, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38653118

RESUMO

One of the current challenges in medicine is to achieve a rapid and unequivocal detection and quantification of extremely low levels of disease biomarkers in complex biological samples. Here, we present the development and analytical evaluation of a low-cost smartphone-based system designed for ultrasensitive detection of the prostate-specific antigen (PSA) using two detection alternatives: electrochemical or optical, by coupling the smartphone with a portable potentiostat or magnifying lenses. An antibody tagged with gold nanoparticles (AuNPs), and indium tin oxide coated polyethylene terephthalate platform (ITO-PET) have been used to develop a sandwich-type immunoassay. Then, a controlled silver electrodeposition on the AuNPs surface is carried out, enhancing their size greatly. Due to such strong nanoparticle-size amplification (from nm to µm), the final detection can be dual, by measuring current intensity or the number of silver-enlarged microstructures generated. The proposed strategies exhibited limit detections (LOD) of 102 and 37 fg/mL for electrochemical and optical detection respectively. The developed immunosensor reaches excellent selectivity and performance characteristics to quantify biomarkers at clinically relevant values without any pretreatment. These proposed procedures could be useful to check and verify possible recurrence after clinical treatment of tumors or even report levels of disease serum biomarkers in early stages.


Assuntos
Técnicas Eletroquímicas , Ouro , Nanopartículas Metálicas , Antígeno Prostático Específico , Prata , Smartphone , Ouro/química , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/análise , Nanopartículas Metálicas/química , Prata/química , Humanos , Técnicas Eletroquímicas/métodos , Galvanoplastia , Imunoensaio/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos , Anticorpos/imunologia , Anticorpos/química , Masculino , Compostos de Estanho
16.
PLoS Pathog ; 7(12): e1002452, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22241982

RESUMO

Burkholderia pseudomallei is a Gram-negative bacterium that infects macrophages and other cell types and causes melioidosis. The interaction of B. pseudomallei with the inflammasome and the role of pyroptosis, IL-1ß, and IL-18 during melioidosis have not been investigated in detail. Here we show that the Nod-like receptors (NLR) NLRP3 and NLRC4 differentially regulate pyroptosis and production of IL-1ß and IL-18 and are critical for inflammasome-mediated resistance to melioidosis. In vitro production of IL-1ß by macrophages or dendritic cells infected with B. pseudomallei was dependent on NLRC4 and NLRP3 while pyroptosis required only NLRC4. Mice deficient in the inflammasome components ASC, caspase-1, NLRC4, and NLRP3, were dramatically more susceptible to lung infection with B. pseudomallei than WT mice. The heightened susceptibility of Nlrp3⁻/⁻ mice was due to decreased production of IL-18 and IL-1ß. In contrast, Nlrc4⁻/⁻ mice produced IL-1ß and IL-18 in higher amount than WT mice and their high susceptibility was due to decreased pyroptosis and consequently higher bacterial burdens. Analyses of IL-18-deficient mice revealed that IL-18 is essential for survival primarily because of its ability to induce IFNγ production. In contrast, studies using IL-1RI-deficient mice or WT mice treated with either IL-1ß or IL-1 receptor agonist revealed that IL-1ß has deleterious effects during melioidosis. The detrimental role of IL-1ß appeared to be due, in part, to excessive recruitment of neutrophils to the lung. Because neutrophils do not express NLRC4 and therefore fail to undergo pyroptosis, they may be permissive to B. pseudomallei intracellular growth. Administration of neutrophil-recruitment inhibitors IL-1ra or the CXCR2 neutrophil chemokine receptor antagonist antileukinate protected Nlrc4⁻/⁻ mice from lethal doses of B. pseudomallei and decreased systemic dissemination of bacteria. Thus, the NLRP3 and NLRC4 inflammasomes have non-redundant protective roles in melioidosis: NLRC4 regulates pyroptosis while NLRP3 regulates production of protective IL-18 and deleterious IL-1ß.


Assuntos
Burkholderia pseudomallei/metabolismo , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Melioidose/metabolismo , Pneumonia Bacteriana/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Humanos , Inflamassomos/genética , Interleucina-18/genética , Interleucina-1beta/genética , Melioidose/genética , Melioidose/prevenção & controle , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos/metabolismo , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/prevenção & controle , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo
17.
Blood ; 118(6): 1560-9, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21659539

RESUMO

Continuous migration of B cells at the follicle contrasts with their stable arrest after encounter with antigen. Two main ligand/receptor pairs are involved in these cell behaviors: the chemokine CXCL13/chemokine receptor CXCR5 and antigen/BCR. Little is known regarding the interplay between CXCR5 and BCR signaling in the modulation of B-cell dynamics and its effect on B-cell activation. We used a 2-dimensional model to study B-cell migration and antigen recognition in real time, and found that BCR signaling strength alters CXCL13-mediated migration, leading to a heterogeneous B-cell behavior pattern. In addition, we demonstrate that CXCL13/CXCR5 signaling does not impair BCR-triggered immune synapse formation and that CXCR5 is excluded from the central antigen cluster. CXCL13/CXCR5 signaling enhances BCR-mediated B-cell activation in at least 2 ways: (1) it assists antigen gathering at the synapse by promoting membrane ruffling and lymphocyte function-associated antigen 1 (LFA-1)-supported adhesion, and (2) it allows BCR signaling integration in motile B cells through establishment of LFA-1-supported migratory junctions. Both processes require functional actin cytoskeleton and non-muscle myosin II motor protein. Therefore, the CXCL13/CXCR5 signaling effect on shaping B-cell dynamics is an effective mechanism that enhances antigen encounter and BCR-triggered B-cell activation.


Assuntos
Linfócitos B/imunologia , Quimiocina CXCL13/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Receptores CXCR5/imunologia , Transdução de Sinais/imunologia , Actinas/imunologia , Actinas/metabolismo , Animais , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Membrana Celular/imunologia , Membrana Celular/metabolismo , Movimento Celular/imunologia , Células Cultivadas , Quimiocina CXCL13/metabolismo , Citoesqueleto/imunologia , Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Cinética , Antígeno-1 Associado à Função Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Miosina Tipo II/imunologia , Miosina Tipo II/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo
18.
Curr Rheumatol Rev ; 19(1): 42-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35593339

RESUMO

Systemic inflammatory diseases could produce neurologic complications, and they are frequently incorporated in the differential diagnosis of neurological symptoms. There are wellestablished criteria to meet the diagnosis of neurologic manifestations of these systemic diseases. Methods: However, the range of clinical presentations varies in each condition, and the prevalence of these complications differs between studies. Hence, in many cases, an etiological relationship is not clearly defined. Results and Conclusion: For these reasons, it is challenging to make an accurate diagnosis. We analyzed the spectrum of neurological manifestations in a cohort of patients with systemic lupus erythematosus, rheumatoid arthritis, Behçet disease and sarcoidosis in order to improve our current knowledge of these complications.


Assuntos
Artrite Reumatoide , Síndrome de Behçet , Lúpus Eritematoso Sistêmico , Sarcoidose , Humanos , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/diagnóstico , Artrite Reumatoide/complicações , Artrite Reumatoide/diagnóstico , Síndrome de Behçet/complicações , Síndrome de Behçet/diagnóstico , Sarcoidose/complicações , Diagnóstico Diferencial
19.
Pflugers Arch ; 463(3): 449-58, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22134771

RESUMO

Since calbindin-D(28K) (CB-D(28K))-positive neurons have been related to nociceptive sensory processing, we have hypothesized that altered CB-D(28K) expression could alter nociceptive transmission. We have used +/+ and -/- knockout (KO) mice for CB-D(28k) in different behavioral models of pain and sensory responses at the caudalis subdivision of the trigeminal spinal nucleus in order to understand how this protein may participate in nociception. Behavioral responses to formalin injection in the hind paw or at the whisker pad or in the hind paw glutamate or i.p. acetic acid tests showed an increase of the pain threshold in CB-D(28k) -/- mice. KO mice showed a diminution of the inhibitory activity at Sp5C nucleus and a marked reduction of GABA content. Sp5C neurons from CB-D(28k) -/- mice did not change their spontaneous activity or tactile response after formalin injection in the whisker pad. In contrast, Sp5C neurons increased their spontaneous firing rate and tactile response after formalin injection in their receptive field in CB-D(28k) +/+ mice. The results of this study demonstrate the active role played by CB-D(28k) in nociceptive sensory transmission. The lack of this calcium binding protein, associated to deficient GABAergic neurotransmission, translates into dysfunction of sensory processing of nociceptive stimuli.


Assuntos
Neurônios/fisiologia , Nociceptividade/fisiologia , Proteína G de Ligação ao Cálcio S100/fisiologia , Núcleo Inferior Caudal do Nervo Trigêmeo/fisiologia , Músculos Abdominais/efeitos dos fármacos , Ácido Acético/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Calbindina 1 , Calbindinas , Feminino , Formaldeído/efeitos adversos , Glutamato Descarboxilase/biossíntese , Ácido Glutâmico/toxicidade , Asseio Animal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Hipersensibilidade Respiratória , Proteína G de Ligação ao Cálcio S100/biossíntese , Transmissão Sináptica , Vibrissas/efeitos dos fármacos
20.
J Proteomics ; 256: 104499, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35092838

RESUMO

Elemental mass spectrometry is a powerful analytical technique widely established in inorganic analysis. However, despite its quantitative capabilities, it is not yet fully integrated or considered in Life Sciences fields like proteomics. Whereas it is true that ICP-MS has suffered from several instrumental and analytical limitations that have hindered its applicability in protein analysis, significant developments during the last decades have turned ICP-MS into an interesting and, in our opinion, a powerful tool to consider for accurate protein quantification without recourse to specific protein standards. Herein we will try to discuss how these traditional limitations in ICP-MS have been overcome, what further improvements are yet necessary (some of which are shared with MS-based proteomics platforms) and enlighten some of the already existing and potential applications of ICP-MS in absolute quantitative proteomics. SIGNIFICANCE: ICP-MS has the potential to become a complementary tool to help molecular mass spectrometry cope with existing limitations, especially those related to standardization and accuracy, in the absolute proteomics field. It can provide absolute quantification of diverse proteoforms using a single generic compound containing sulfur and/or another target element (e.g., phosphorous). Moreover, its applications in quantitative proteomics are no longer limited to protein standards certification or quantification of simple or purified mixtures. Interestingly, absolute quantification of proteins using ICP-MS is favored when carried out at the intact level, making it very compatible with top-down proteomics approaches. Recent instrumental and methodological advances enable synergic combination of ICP-MS with stablished LC-MS proteomics methodologies, setting the basis for its implementation in quantitative proteomics workflows.


Assuntos
Proteínas , Proteômica , Espectrometria de Massas/métodos , Proteínas/análise , Proteômica/métodos , Padrões de Referência , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA