RESUMO
Adaptation to the environment and extraction of energy are essential for survival. Some species have found niches and specialized in using a particular source of energy, whereas others-including humans and several other mammals-have developed a high degree of flexibility1. A lot is known about the general metabolic fates of different substrates but we still lack a detailed mechanistic understanding of how cells adapt in their use of basic nutrients2. Here we show that the closely related fasting/starvation-induced forkhead transcription factors FOXK1 and FOXK2 induce aerobic glycolysis by upregulating the enzymatic machinery required for this (for example, hexokinase-2, phosphofructokinase, pyruvate kinase, and lactate dehydrogenase), while at the same time suppressing further oxidation of pyruvate in the mitochondria by increasing the activity of pyruvate dehydrogenase kinases 1 and 4. Together with suppression of the catalytic subunit of pyruvate dehydrogenase phosphatase 1 this leads to increased phosphorylation of the E1α regulatory subunit of the pyruvate dehydrogenase complex, which in turn inhibits further oxidation of pyruvate in the mitochondria-instead, pyruvate is reduced to lactate. Suppression of FOXK1 and FOXK2 induce the opposite phenotype. Both in vitro and in vivo experiments, including studies of primary human cells, show how FOXK1 and/or FOXK2 are likely to act as important regulators that reprogram cellular metabolism to induce aerobic glycolysis.
Assuntos
Aerobiose , Fatores de Transcrição Forkhead/metabolismo , Glicólise , Células 3T3 , Animais , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Humanos , Ácido Láctico/biossíntese , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Oxirredução , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismoRESUMO
In recent years, lactate has been recognized as an important circulating energy substrate rather than only a dead-end metabolic waste product generated during glucose oxidation at low levels of oxygen. The term "aerobic glycolysis" has been coined to denote increased glucose uptake and lactate production despite normal oxygen levels and functional mitochondria. Hence, in "aerobic glycolysis," lactate production is a metabolic choice, whereas in "anaerobic glycolysis," it is a metabolic necessity based on inadequate levels of oxygen. Interestingly, lactate can be taken up by cells and oxidized to pyruvate and thus constitutes a source of pyruvate that is independent of insulin. Here, we show that the transcription factor Foxp1 regulates glucose uptake and lactate production in adipocytes and myocytes. Overexpression of Foxp1 leads to increased glucose uptake and lactate production. In addition, protein levels of several enzymes in the glycolytic pathway are upregulated, such as hexokinase 2, phosphofructokinase, aldolase, and lactate dehydrogenase. Using chromatin immunoprecipitation and real-time quantitative PCR assays, we demonstrate that Foxp1 directly interacts with promoter consensus cis-elements that regulate expression of several of these target genes. Conversely, knockdown of Foxp1 suppresses these enzyme levels and lowers glucose uptake and lactate production. Moreover, mice with a targeted deletion of Foxp1 in muscle display systemic glucose intolerance with decreased muscle glucose uptake. In primary human adipocytes with induced expression of Foxp1, we find increased glycolysis and glycolytic capacity. Our results indicate Foxp1 may play an important role as a regulator of aerobic glycolysis in adipose tissue and muscle.
Assuntos
Adipócitos , Fatores de Transcrição Forkhead , Glicólise , Células Musculares , Fatores de Transcrição , Animais , Camundongos , Adipócitos/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Glicólise/genética , Ácido Láctico/metabolismo , Células Musculares/metabolismo , Piruvatos , Fatores de Transcrição/metabolismo , Ratos , Linhagem Celular , TranscriptomaRESUMO
Detection of nucleic acids within subcellular compartments is key to understanding their function. Determining the intracellular distribution of nucleic acids requires quantitative retention and estimation of their association with different organelles by immunofluorescence microscopy. This is particularly important for the delivery of nucleic acid therapeutics, which depends on endocytic uptake and endosomal escape. However, the current protocols fail to preserve the majority of exogenously delivered nucleic acids in the cytoplasm. To solve this problem, by monitoring Cy5-labeled mRNA delivered to primary human adipocytes via lipid nanoparticles (LNP), we optimized cell fixation, permeabilization, and immunostaining of a number of organelle markers, achieving quantitative retention of mRNA and allowing visualization of levels that escape detection using conventional procedures. The optimized protocol proved effective on exogenously delivered siRNA, miRNA, as well as endogenous miRNA. Our protocol is compatible with RNA probes of single molecule fluorescence in situ hybridization (smFISH) and molecular beacon, thus demonstrating that it is broadly applicable to study a variety of nucleic acids in cultured cells.
Assuntos
Imunofluorescência/métodos , Hibridização in Situ Fluorescente/métodos , RNA/metabolismo , Células Cultivadas , Fixadores/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Nanopartículas/química , RNA/química , Processamento Pós-Transcricional do RNA , Transporte de RNARESUMO
BACKGROUND: Recent studies have highlighted that uncoupling of sarco-/endoplasmic reticulum Ca2+-ATPase (SERCA) by sarcolipin (SLN) increases ATP consumption and contributes to heat liberation. Exploiting this thermogenic mechanism in skeletal muscle may provide an attractive strategy to counteract obesity and associated metabolic disorders. In the present study, we have investigated the role of SLN on substrate metabolism in human skeletal muscle cells. METHODS AND RESULTS: After generation of skeletal muscle cells with stable SLN knockdown (SLN-KD), cell viability, glucose and oleic acid (OA) metabolism, mitochondrial function, as well as gene expressions were determined. Depletion of SLN did not influence cell viability. However, glucose and OA oxidation were diminished in SLN-KD cells compared to control myotubes. Basal respiration measured by respirometry was also observed to be reduced in cells with SLN-KD. The metabolic perturbation in SLN-KD cells was reflected by reduced gene expression levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and forkhead box O1 (FOXO1). Furthermore, accumulation of OA was increased in cells with SLN-KD compared to control cells. These effects were accompanied by increased lipid formation and incorporation of OA into complex lipids. Additionally, formation of complex lipids and free fatty acid from de novo lipogenesis with acetate as substrate was enhanced in SLN-KD cells. Detection of lipid droplets using Oil red O staining also showed increased lipid accumulation in SLN-KD cells. CONCLUSIONS: Overall, our study sheds light on the importance of SLN in maintaining metabolic homeostasis in human skeletal muscle. Findings from the current study suggest that therapeutic strategies involving SLN-mediated futile cycling of SERCA might have significant implications in the treatment of obesity and associated metabolic disorders.
Assuntos
Proteolipídeos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Glucose/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares , Músculo Esquelético/metabolismo , Obesidade/genética , Proteolipídeos/genética , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismoRESUMO
BACKGROUND AND AIMS: The proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in cholesterol homeostasis, and its inhibition represents an effective therapy to lower low-density lipoprotein cholesterol (LDL-C) levels. In this study, we examined the impact of the PCSK9 rs11591147 loss-of-function (LOF) variant on liver damage in a multicenter collection of patients at risk of nonalcoholic steatohepatitis (NASH), in clinical samples and experimental models. METHODS: We considered 1874 consecutive individuals at risk of NASH as determined by histology. The SNP rs11591147, encoding for the p.R46L variant of PCSK9, was genotyped by TaqMan assays. We also evaluated 1) PCSK9 mRNA hepatic expression in human liver, and 2) the impact of a NASH-inducing diet in mice with hepatic overexpression of human PCSK9. RESULTS: Carriers of PCSK9 rs11591147 had lower circulating LDL-C levels and were protected against nonalcoholic fatty liver disease (NAFLD) (OR: 0.42; 95% CI: 0.22-0.81; P = .01), NASH (OR: 0.48; 95% CI: 0.26-0.87; P = .01) and more severe fibrosis (OR: 0.55; 95% CI: 0.32-0.94; P = .03) independently of clinical, metabolic and genetic confounding factors. PCSK9 hepatic expression was directly correlated with liver steatosis (P = .03). Finally, liver-specific overexpression of human PCSK9 in male mice drives NAFLD and fibrosis upon a dietary challenge. CONCLUSIONS: In individuals at risk of NASH, PCSK9 was induced with hepatic fat accumulation and PCSK9 rs11591147 LOF variant was protective against liver steatosis, NASH and fibrosis, suggesting that PCSK9 inhibition may be a new therapeutic strategy to treat NASH.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Pró-Proteína Convertase 9 , Animais , LDL-Colesterol , Humanos , Fígado , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Pró-Proteína Convertase 9/genéticaRESUMO
The development of safe and efficacious gene vectors has limited greatly the potential for therapeutic treatments based on messenger RNA (mRNA). Lipid nanoparticles (LNPs) formed by an ionizable cationic lipid (here DLin-MC3-DMA), helper lipids (distearoylphosphatidylcholine, DSPC, and cholesterol), and a poly(ethylene glycol) (PEG) lipid have been identified as very promising delivery vectors of short interfering RNA (siRNA) in different clinical phases; however, delivery of high-molecular weight RNA has been proven much more demanding. Herein we elucidate the structure of hEPO modified mRNA-containing LNPs of different sizes and show how structural differences affect transfection of human adipocytes and hepatocytes, two clinically relevant cell types. Employing small-angle scattering, we demonstrate that LNPs have a disordered inverse hexagonal internal structure with a characteristic distance around 6 nm in presence of mRNA, whereas LNPs containing no mRNA do not display this structure. Furthermore, using contrast variation small-angle neutron scattering, we show that one of the lipid components, DSPC, is localized mainly at the surface of mRNA-containing LNPs. By varying LNP size and surface composition we demonstrate that both size and structure have significant influence on intracellular protein production. As an example, in both human adipocytes and hepatocytes, protein expression levels for 130 nm LNPs can differ as much as 50-fold depending on their surface characteristics, likely due to a difference in the ability of LNP fusion with the early endosome membrane. We consider these discoveries to be fundamental and opening up new possibilities for rational design of synthetic nanoscopic vehicles for mRNA delivery.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Eritropoetina/genética , Hepatócitos/metabolismo , Lipídeos/química , Nanopartículas/química , RNA Mensageiro/genética , Adipócitos/metabolismo , Sistemas de Liberação de Medicamentos/instrumentação , Eritropoetina/metabolismo , Humanos , Tamanho da Partícula , RNA Mensageiro/química , RNA Mensageiro/metabolismo , TransfecçãoRESUMO
Alterations of mitochondrial metabolism and genomic instability have been implicated in tumorigenesis in multiple tissues. High-grade glioma (HGG), one of the most lethal human neoplasms, displays genetic modifications of Krebs cycle components as well as electron transport chain (ETC) alterations. Furthermore, the p53 tumor suppressor, which has emerged as a key regulator of mitochondrial respiration at the expense of glycolysis, is genetically inactivated in a large proportion of HGG cases. Therefore, it is becoming evident that genetic modifications can affect cell metabolism in HGG; however, it is currently unclear whether mitochondrial metabolism alterations could vice versa promote genomic instability as a mechanism for neoplastic transformation. Here, we show that, in neural progenitor/stem cells (NPCs), which can act as HGG cell of origin, inhibition of mitochondrial metabolism leads to p53 genetic inactivation. Impairment of respiration via inhibition of complex I or decreased mitochondrial DNA copy number leads to p53 genetic loss and a glycolytic switch. p53 genetic inactivation in ETC-impaired neural stem cells is caused by increased reactive oxygen species and associated oxidative DNA damage. ETC-impaired cells display a marked growth advantage in the presence or absence of oncogenic RAS, and form undifferentiated tumors when transplanted into the mouse brain. Finally, p53 mutations correlated with alterations in ETC subunit composition and activity in primary glioma-initiating neural stem cells. Together, these findings provide previously unidentified insights into the relationship between mitochondria, genomic stability, and tumor suppressive control, with implications for our understanding of brain cancer pathogenesis.
Assuntos
Neoplasias Encefálicas , Transformação Celular Neoplásica , Glioma , Células-Tronco Neurais/metabolismo , Proteína Supressora de Tumor p53 , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Ciclo do Ácido Cítrico/genética , Dano ao DNA , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Glicólise/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Células-Tronco Neurais/patologia , Oxirredução , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
The generation of specialized neural cells in the developing and postnatal central nervous system is a highly regulated process, whereby neural stem cells divide to generate committed neuronal progenitors, which then withdraw from the cell cycle and start to differentiate. Cell cycle checkpoints play a major role in regulating the balance between neural stem cell expansion and differentiation. Loss of tumor suppressors involved in checkpoint control can lead to dramatic alterations of neurogenesis, thus contributing to neoplastic transformation. Here we summarize and critically discuss the existing literature on the role of tumor suppressive pathways and their regulatory networks in the control of neurogenesis and transformation.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Proteínas do Grupo Polycomb/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas do Grupo Polycomb/genética , Proteína do Retinoblastoma/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genéticaRESUMO
Introduction: Inflammation is a significant contributor to cardiorenal morbidity and mortality in diabetic kidney disease (DKD). The pathophysiological mechanisms linking systemic, subacute inflammation and local, kidney injury-initiated immune maladaptation is partially understood. Methods: Here, we explored the expression of proinflammatory cytokines in patients with DKD; investigated mouse models of type 1 and type 2 diabetes (T2D); evaluated glomerular signaling in vitro; performed post hoc analyses of systemic and urinary markers of inflammation; and initiated a phase 2b clinical study (FRONTIER-1; NCT04170543). Results: Transcriptomic profiling of kidney biopsies from patients with DKD revealed significant glomerular upregulation of interleukin-33 (IL-33). Inhibition of IL-33 signaling reduced glomerular damage and albuminuria in the uninephrectomized db/db mouse model (T2D/DKD). On a cellular level, inhibiting IL-33 improved glomerular endothelial health by decreasing cellular inflammation and reducing release of proinflammatory cytokines. Therefore, FRONTIER-1 was designed to test the safety and efficacy of the IL-33-targeted monoclonal antibody tozorakimab in patients with DKD. So far, 578 patients are enrolled in FRONTIER-1. The baseline inflammation status of participants (N > 146) was assessed in blood and urine. Comparison to independent reference cohorts (N > 200) validated the distribution of urinary tumor necrosis factor receptor 1 (TNFR1) and C-C motif chemokine ligand 2 (CCL2). Treatment with dapagliflozin for 6 weeks did not alter these biomarkers significantly. Conclusion: We show that blocking the IL-33 pathway may mitigate glomerular endothelial inflammation in DKD. The findings from the FRONTIER-1 study will provide valuable insights into the therapeutic potential of IL-33 inhibition in DKD.
RESUMO
White adipose tissue browning, defined by accelerated mitochondrial metabolism and biogenesis, is considered a promising mean to treat or prevent obesity-associated metabolic disturbances. We hypothesize that redox stress acutely leads to increased production of reactive oxygen species (ROS), which activate electrophile sensor nuclear factor erythroid 2-Related Factor 2 (NRF2) that over time results in an adaptive adipose tissue browning process. To test this, we have exploited adipocyte-specific NRF2 knockout mice and cultured adipocytes and analyzed time- and dose-dependent effect of NAC and lactate treatment on antioxidant expression and browning-like processes. We found that short-term antioxidant treatment with N-acetylcysteine (NAC) induced reductive stress as evident from increased intracellular NADH levels, increased ROS-production, reduced oxygen consumption rate (OCR), and increased NRF2 levels in white adipocytes. In contrast, and in line with our hypothesis, longer-term NAC treatment led to a NRF2-dependent browning response. Lactate treatment elicited similar effects as NAC, and mechanistically, these NRF2-dependent adipocyte browning responses in vitro were mediated by increased heme oxygenase-1 (HMOX1) activity. Moreover, this NRF2-HMOX1 axis was also important for ß3-adrenergic receptor activation-induced adipose tissue browning in vivo. In conclusion, our findings show that administration of exogenous antioxidants can affect biological function not solely through ROS neutralization, but also through reductive stress. We also demonstrate that NRF2 is essential for white adipose tissue browning processes.
Assuntos
Adipócitos Brancos , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Acetilcisteína/farmacologia , Adaptação Fisiológica , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Lactatos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Adipose tissue is one of the main regulative sites for energy metabolism. Excess lipid storage and expansion of white adipose tissue (WAT) is the primary contributor to obesity, a strong predisposing factor for development of insulin resistance. Sentrin-specific protease (SENP) 2 has been shown to play a role in metabolism in murine fat and skeletal muscle cells, and we have previously demonstrated its role in energy metabolism of human skeletal muscle cells. In the present work, we have investigated the impact of SENP2 on fatty acid and glucose metabolism in primary human fat cells by using cultured primary human adipocytes to knock down the SENP2 gene. Glucose uptake and oxidation, as well as accumulation and distribution of oleic acid into complex lipids were decreased, while oleic acid oxidation was increased in SENP2-knockdown cells compared to control adipocytes. Furthermore, lipogenesis was reduced by SENP2-knockdown in adipocytes. Although TAG accumulation relative to total uptake was unchanged, there was increased mRNA expression of metabolically relevant genes such as UCP1 and PPARGC1A and mRNA and proteomic data revealed increased levels of mRNA and proteins related to mitochondrial function by SENP2-knockdown. In conclusion, SENP2 is an important regulator of energy metabolism in primary human adipocytes and its knockdown reduce glucose metabolism and lipid accumulation, while increasing lipid oxidation in human adipocytes.
RESUMO
Increased saturated fatty acid (SFA) levels in membrane phospholipids have been implicated in the development of metabolic disease. Here, we tested the hypothesis that increased SFA content in cell membranes negatively impacts adipocyte insulin signaling. Preadipocyte cell models with elevated SFA levels in phospholipids were generated by disrupting the ADIPOR2 locus, which resulted in a striking twofold increase in SFA-containing phosphatidylcholines and phosphatidylethanolamines, which persisted in differentiated adipocytes. Similar changes in phospholipid composition were observed in white adipose tissues isolated from the ADIPOR2-knockout mice. The SFA levels in phospholipids could be further increased by treating ADIPOR2-deficient cells with palmitic acid and resulted in reduced membrane fluidity and endoplasmic reticulum stress in mouse and human preadipocytes. Strikingly, increased SFA levels in differentiated adipocyte phospholipids had no effect on adipocyte gene expression or insulin signaling in vitro. Similarly, increased adipocyte phospholipid saturation did not impair white adipose tissue function in vivo, even in mice fed a high-saturated fat diet at thermoneutrality. We conclude that increasing SFA levels in adipocyte phospholipids is well tolerated and does not affect adipocyte insulin signaling in vitro and in vivo.
Assuntos
Insulina , Fosfolipídeos , Camundongos , Humanos , Animais , Insulina/metabolismo , Adipócitos/metabolismo , Ácidos Graxos/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte/metabolismoRESUMO
Mutations in the gene encoding FERM domain-containing 7 protein (FRMD7) are recognized as an important cause of X-linked idiopathic infantile nystagmus (IIN). However, the precise role of FRMD7 and its involvement in the pathogenesis of IIN are not understood. In the present study, we have explored the role of FRMD7 in neuronal development. Using in situ hybridization and immunohistochemistry, we reveal that FRMD7 expression is spatially and temporally regulated in both the human and mouse brain during embryonic and fetal development. Furthermore, we show that FRMD7 expression is up-regulated upon retinoic acid (RA)-induced differentiation of mouse neuroblastoma NEURO2A cells, suggesting FRMD7 may play a role in this process. Indeed, we demonstrate, for the first time, that knockdown of FRMD7 during neuronal differentiation results in altered neurite development. Taken together, our data suggest that FRMD7 is involved in multiple aspects of neuronal development, and have direct importance to further understanding the pathogenesis of IIN.
Assuntos
Encéfalo/crescimento & desenvolvimento , Proteínas do Citoesqueleto/genética , Proteínas de Membrana/genética , Neurônios/citologia , Nistagmo Congênito/metabolismo , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Neurônios/metabolismo , Nistagmo Congênito/genéticaRESUMO
Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS.
Assuntos
Doenças Mitocondriais/genética , Neurônios/citologia , Neurônios/metabolismo , Timidina Quinase/deficiência , Análise de Variância , Animais , Ataxia/enzimologia , Ataxia/etiologia , Sequência de Bases , Encéfalo/metabolismo , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Metabolismo Energético , Vetores Genéticos , Immunoblotting , Imuno-Histoquímica , Lentivirus , Camundongos , Camundongos Knockout , Doenças Mitocondriais/complicações , Dados de Sequência Molecular , Mutação/genética , Timidina Quinase/genéticaRESUMO
Delivery of exogenous mRNA using lipid nanoparticles (LNPs) is a promising strategy for therapeutics. However, a bottleneck remains in the poor understanding of the parameters that correlate with endosomal escape versus cytotoxicity. To address this problem, we compared the endosomal distribution of six LNP-mRNA formulations of diverse chemical composition and efficacy, similar to those used in mRNA-based vaccines, in primary human adipocytes, fibroblasts, and HeLa cells. Surprisingly, we found that total uptake is not a sufficient predictor of delivery, and different LNPs vary considerably in endosomal distributions. Prolonged uptake impaired endosomal acidification, a sign of cytotoxicity, and caused mRNA to accumulate in compartments defective in cargo transport and unproductive for delivery. In contrast, early endocytic/recycling compartments have the highest probability for mRNA escape. By using super-resolution microscopy, we could resolve a single LNP-mRNA within subendosomal compartments and capture events of mRNA escape from endosomal recycling tubules. Our results change the view of the mechanisms of endosomal escape and define quantitative parameters to guide the development of mRNA formulations toward higher efficacy and lower cytotoxicity.
Assuntos
Endocitose , Endossomos/metabolismo , Lipossomos/metabolismo , Nanopartículas/metabolismo , RNA Mensageiro/metabolismo , Células HeLa , Humanos , RNA Mensageiro/genética , Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
Fibroblast growth factor 21 (FGF21) is a promising therapeutic agent for treatment of type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH). We show that therapeutic levels of FGF21 were achieved following subcutaneous (s.c.) administration of mRNA encoding human FGF21 proteins. The efficacy of mRNA was assessed following 2-weeks repeated s.c. dosing in diet-induced obese (DIO), mice which resulted in marked decreases in body weight, plasma insulin levels, and hepatic steatosis. Pharmacokinetic/pharmacodynamic (PK/PD) modelling of several studies in both lean and DIO mice showed that mRNA encoding human proteins provided improved therapeutic coverage over recombinant dosed proteins in vivo. This study is the first example of s.c. mRNA therapy showing pre-clinical efficacy in a disease-relevant model, thus, showing the potential for this modality in the treatment of chronic diseases, including T2D and NASH.
RESUMO
Alterations in the autophagic pathway are associated with the onset and progression of various diseases. However, despite the therapeutic potential for pharmacological modulators of autophagic flux, few such compounds have been characterised. Here we show that clomipramine, an FDA-approved drug long used for the treatment of psychiatric disorders, and its active metabolite desmethylclomipramine (DCMI) interfere with autophagic flux. Treating cells with DCMI caused a significant and specific increase in autophagosomal markers and a concomitant blockage of the degradation of autophagic cargo. This observation might be relevant in therapy in which malignant cells exploit autophagy to survive stress conditions, rendering them more susceptible to the action of cytotoxic agents. In accordance, DCMI-mediated obstruction of autophagic flux increased the cytotoxic effect of chemotherapeutic agents. Collectively, our studies describe a new function of DCMI that can be exploited for the treatment of pathological conditions in which manipulation of autophagic flux is thought to be beneficial.
Assuntos
Autofagia/efeitos dos fármacos , Clomipramina/análogos & derivados , Animais , Biomarcadores/metabolismo , Clomipramina/farmacologia , Ensaio de Unidades Formadoras de Colônias , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Mutação Puntual/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de TempoRESUMO
Sentrin-specific protease (SENP) 2 has been suggested as a possible novel drug target for the treatment of obesity and type 2 diabetes mellitus after observations of a palmitate-induced increase in SENP2 that lead to increased fatty acid oxidation and improved insulin sensitivity in skeletal muscle cells from mice. However, no precedent research has examined the role of SENP2 in human skeletal muscle cells. In the present work, we have investigated the impact of SENP2 on fatty acid and glucose metabolism as well as insulin sensitivity in human skeletal muscle using cultured primary human myotubes. Acute (4 âh) oleic acid oxidation was reduced in SENP2-knockdown (SENP2-KD) cells compared to control cells, with no difference in uptake. After prelabeling (24 âh) with oleic acid, total lipid content and incorporation into triacylglycerol was decreased, while incorporation into other lipids, as well as complete oxidation and ß-oxidation was increased in SENP2-KD cells. Basal glucose uptake (i.e., not under insulin-stimulated conditions) was higher in SENP2-KD cells, whereas oxidation was similar to control myotubes. Further, basal glycogen synthesis was not different in SENP2-KD myotubes, but both insulin-stimulated glycogen synthesis and AktSer473 phosphorylation was completely blunted in SENP2-KD cells. In conclusion, SENP2 plays an important role in fatty acid and glucose metabolism in human myotubes. Interestingly, it also appears to have a pivotal role in regulating myotube insulin sensitivity. Future studies should examine the role of SENP2 in regulation of insulin sensitivity in other tissues and in vivo, defining the potential for SENP2 as a drug target.
RESUMO
Lipid nanoparticles (LNPs) are the most clinically advanced delivery system for RNA-based drugs but have predominantly been investigated for intravenous and intramuscular administration. Subcutaneous administration opens the possibility of patient self-administration and hence long-term chronic treatment that could enable messenger RNA (mRNA) to be used as a novel modality for protein replacement or regenerative therapies. In this study, we show that subcutaneous administration of mRNA formulated within LNPs can result in measurable plasma exposure of a secreted protein. However, subcutaneous administration of mRNA formulated within LNPs was observed to be associated with dose-limiting inflammatory responses. To overcome this limitation, we investigated the concept of incorporating aliphatic ester prodrugs of anti-inflammatory steroids within LNPs, i.e., functionalized LNPs to suppress the inflammatory response. We show that the effectiveness of this approach depends on the alkyl chain length of the ester prodrug, which determines its retention at the site of administration. An unexpected additional benefit to this approach is the prolongation observed in the duration of protein expression. Our results demonstrate that subcutaneous administration of mRNA formulated in functionalized LNPs is a viable approach to achieving systemic levels of therapeutic proteins, which has the added benefits of being amenable to self-administration when chronic treatment is required.
RESUMO
Neurological complications as well as movement disorders are relevant symptoms in animals and humans chronically exposed to dithiocarbamates. Using rat pheochromocytoma cells differentiated by NGF (PC12), we investigated whether propineb affects acetylcholine (Ach) release and the molecular mechanisms involved. Propineb (0.001-100 nM) dose-dependently increased Ach release from PC12. Thus, 0.001-1 nM propineb-induced Ach release, reaching a maximal effect ( approximately 50%) at 0.1-1 nM. Higher concentrations of propineb (10-100 nM) caused a progressive disappearance of the effect. Chelation of extra- and intracellular Ca(2+) did not affect Ach release by propineb, which was prevented by the actin stabilizer jasplakinolide (500 nM). Accordingly, actin depolymerization was observed after exposure of differentiated PC12 to 0.1-1 nM propineb, a loss of effect was evident at higher concentrations (100 nM), and the effect was Ca(2+)-independent. Disulfiram, a related dithiocarbamate not coordinated with Zn(2+), also depolymerized actin, suggesting the involvement of the organic structure of dithiocarbamates rather than the leakage of Zn(2+). Nevertheless, propineb did not depolymerize actin in a cell-free system. These data suggest that dithiocarbamates, through the activation of intracellular cascade(s), impair cytoskeletal actin. This effect may contribute to affect synaptic vesicles processing resulting in an impaired cholinergic transmission.