Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 139(6): 894-906, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34582559

RESUMO

Translocations involving the NUP98 gene produce NUP98-fusion proteins and are associated with a poor prognosis in acute myeloid leukemia (AML). MLL1 is a molecular dependency in NUP98-fusion leukemia, and therefore we investigated the efficacy of therapeutic blockade of the menin-MLL1 interaction in NUP98-fusion leukemia models. Using mouse leukemia cell lines driven by NUP98-HOXA9 and NUP98-JARID1A fusion oncoproteins, we demonstrate that NUP98-fusion-driven leukemia is sensitive to the menin-MLL1 inhibitor VTP50469, with an IC50 similar to what we have previously reported for MLL-rearranged and NPM1c leukemia cells. Menin-MLL1 inhibition upregulates markers of differentiation such as CD11b and downregulates expression of proleukemogenic transcription factors such as Meis1 in NUP98-fusion-transformed leukemia cells. We demonstrate that MLL1 and the NUP98 fusion protein itself are evicted from chromatin at a critical set of genes that are essential for the maintenance of the malignant phenotype. In addition to these in vitro studies, we established patient-derived xenograft (PDX) models of NUP98-fusion-driven AML to test the in vivo efficacy of menin-MLL1 inhibition. Treatment with VTP50469 significantly prolongs survival of mice engrafted with NUP98-NSD1 and NUP98-JARID1A leukemias. Gene expression analysis revealed that menin-MLL1 inhibition simultaneously suppresses a proleukemogenic gene expression program, including downregulation of the HOXa cluster, and upregulates tissue-specific markers of differentiation. These preclinical results suggest that menin-MLL1 inhibition may represent a rational, targeted therapy for patients with NUP98-rearranged leukemias.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Proto-Oncogênicas/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas/genética
2.
J Biol Chem ; 292(27): 11388-11399, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28550085

RESUMO

Mesenchymal-to-epithelial transition (MET) and epithelial-to-mesenchymal transition (EMT) are important processes in kidney development. Failure to undergo MET during development leads to the initiation of Wilms tumor, whereas EMT contributes to the development of renal cell carcinomas (RCC). The role of calcium regulators in governing these processes is becoming evident. We demonstrated earlier that Na+/Ca2+ exchanger 1 (NCX1), a major calcium exporter in renal epithelial cells, regulates epithelial cell motility. Here, we show for the first time that NCX1 mRNA and protein expression was down-regulated in Wilms tumor and RCC. Knockdown of NCX1 in Madin-Darby canine kidney cells induced fibroblastic morphology, increased intercellular junctional distance, and induced paracellular permeability, loss of apico-basal polarity in 3D cultures, and anchorage-independent growth, accompanied by expression of mesenchymal markers. We also provide evidence that NCX1 interacts with and anchors E-cadherin to the cell surface independent of NCX1 ion transport activity. Consistent with destabilization of E-cadherin, NCX1 knockdown cells showed an increase in ß-catenin nuclear localization, enhanced transcriptional activity, and up-regulation of downstream targets of the ß-catenin signaling pathway. Taken together, knockdown of NCX1 in Madin-Darby canine kidney cells alters epithelial morphology and characteristics by destabilization of E-cadherin and induction of ß-catenin signaling.


Assuntos
Transição Epitelial-Mesenquimal , Rim/metabolismo , Transdução de Sinais , Trocador de Sódio e Cálcio/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Cães , Técnicas de Silenciamento de Genes , Rim/citologia , Células Madin Darby de Rim Canino , Estabilidade Proteica , Trocador de Sódio e Cálcio/genética , beta Catenina/genética , beta Catenina/metabolismo
3.
J Biol Chem ; 290(20): 12463-73, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25770213

RESUMO

Na(+)/Ca(2+) exchanger-1 (NCX1) is a major calcium extrusion mechanism in renal epithelial cells enabling the efflux of one Ca(2+) ion and the influx of three Na(+) ions. The gradient for this exchange activity is provided by Na,K-ATPase, a hetero-oligomer consisting of a catalytic α-subunit and a regulatory ß-subunit (Na,K-ß) that also functions as a motility and tumor suppressor. We showed earlier that mice with heart-specific ablation (KO) of Na,K-ß had a specific reduction in NCX1 protein and were ouabain-insensitive. Here, we demonstrate that Na,K-ß associates with NCX1 and regulates its localization to the cell surface. Madin-Darby canine kidney cells with Na,K-ß knockdown have reduced NCX1 protein and function accompanied by 2.1-fold increase in free intracellular calcium and a corresponding increase in the rate of cell migration. Increased intracellular calcium up-regulated ERK1/2 via calmodulin-dependent activation of PI3K. Both myosin light chain kinase and Rho-associated kinase acted as mediators of ERK1/2-dependent migration. Restoring NCX1 expression in ß-KD cells reduced migration rate and ERK1/2 activation, suggesting that NCX1 functions downstream of Na,K-ß in regulating cell migration. In parallel, inhibition of NCX1 by KB-R7943 in Madin-Darby canine kidney cells, LLC-PK1, and human primary renal epithelial cells (HREpiC) increased ERK1/2 activation and cell migration. This increased migration was associated with high myosin light chain phosphorylation by PI3K/ERK-dependent mechanism in HREpiC cells. These data confirm the role of NCX1 activity in regulating renal epithelial cell migration.


Assuntos
Cálcio/metabolismo , Movimento Celular/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Antiarrítmicos/farmacologia , Movimento Celular/efeitos dos fármacos , Cães , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Rim/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Madin Darby de Rim Canino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Tioureia/análogos & derivados , Tioureia/farmacologia , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
4.
Mol Cancer ; 14: 159, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26286140

RESUMO

BACKGROUND: The Sonic hedgehog (Shh) signaling pathway plays an important role in cerebellar development, and mutations leading to hyperactive Shh signaling have been associated with certain forms of medulloblastoma, a common form of pediatric brain cancer. While the fundamentals of this pathway are known, the molecular targets contributing to Shh-mediated proliferation and transformation are still poorly understood. Na,K-ATPase is a ubiquitous enzyme that maintains intracellular ion homeostasis and functions as a signaling scaffold and a cell adhesion molecule. Changes in Na,K-ATPase function and subunit expression have been reported in several cancers and loss of the ß1-subunit has been associated with a poorly differentiated phenotype in carcinoma but its role in medulloblastoma progression is not known. METHODS: Human medulloblastoma cell lines and primary cultures of cerebellar granule cell precursors (CGP) were used to determine whether Shh regulates Na,K-ATPase expression. Smo/Smo medulloblastoma were used to assess the Na,K-ATPase levels in vivo. Na,K-ATPase ß1-subunit was knocked down in DAOY cells to test its role in medulloblastoma cell proliferation and tumorigenicity. RESULTS: Na,K-ATPase ß1-subunit levels increased with differentiation in normal CGP cells. Activation of Shh signaling resulted in reduced ß1-subunit mRNA and protein levels and was mimicked by overexpression of Gli1and Bmi1, both members of the Shh signaling cascade; overexpression of Bmi1 reduced ß1-subunit promoter activity. In human medulloblastoma cells, low ß1-subunit levels were associated with increased cell proliferation and in vivo tumorigenesis. CONCLUSIONS: Na,K-ATPase ß1-subunit is a target of the Shh signaling pathway and loss of ß1-subunit expression may contribute to tumor development and progression not only in carcinoma but also in medulloblastoma, a tumor of neuronal origin.


Assuntos
Carcinogênese/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , ATPase Trocadora de Sódio-Potássio/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Meduloblastoma/patologia , Proteína Quinase 7 Ativada por Mitógeno/biossíntese , RNA Mensageiro/biossíntese , Transdução de Sinais/genética , ATPase Trocadora de Sódio-Potássio/genética , Fatores de Transcrição/biossíntese , Proteína GLI1 em Dedos de Zinco
5.
J Cell Sci ; 125(Pt 23): 5711-20, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23077177

RESUMO

Na,K-ATPase is a hetero-oligomer of an α- and a ß-subunit. The α-subunit (Na,K-α) possesses the catalytic function, whereas the ß-subunit (Na,K-ß) has cell-cell adhesion function and is localized to the apical junctional complex in polarized epithelial cells. Earlier, we identified two distinct conserved motifs on the Na,K-ß(1) transmembrane domain that mediate protein-protein interactions: a glycine zipper motif involved in the cis homo-oligomerization of Na,K-ß(1) and a heptad repeat motif that is involved in the hetero-oligomeric interaction with Na,K-α(1). We now provide evidence that knockdown of Na,K-ß(1) prevents lumen formation and induces activation of extracellular regulated kinases 1 and 2 (ERK1/2) mediated by phosphatidylinositol 3-kinase in MDCK cells grown in three-dimensional collagen cultures. These cells sustained cell proliferation in an ERK1/2-dependent manner and did not show contact inhibition at high cell densities, as revealed by parental MDCK cells. This phenotype could be rescued by wild-type Na,K-ß(1) or heptad repeat motif mutant of Na,K-ß(1), but not by the glycine zipper motif mutant that abrogates Na,K-ß(1) cis homo-oligomerization. These studies suggest that Na,K-ß(1) cis homo-oligomerization rather than hetero-oligomerization with Na,K-α(1) is involved in epithelial lumen formation. The relevance of these findings to pre-neoplastic lumen filling in epithelial cancer is discussed.


Assuntos
ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Cães , Immunoblotting , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , ATPase Trocadora de Sódio-Potássio/química
6.
Blood Rev ; 64: 101154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38016838

RESUMO

Children with Down syndrome (DS) have a 10- to 20-fold greater predisposition to develop acute leukemia compared to the general population, with a skew towards myeloid leukemia (ML-DS). While ML-DS is known to be a subtype with good outcome, patients who relapse face a dismal prognosis. Acute lymphocytic leukemia in DS (DS-ALL) is considered to have poor prognosis. The relapse rate is high in DS-ALL compared to their non-DS counterparts. We have a better understanding about the mutational spectrum of DS leukemia. Studies using animal, embryonic stem cell- and induced pluripotent stem cell-based models have shed light on the mechanism by which these mutations contribute to disease initiation and progression. In this review, we list the currently available treatment strategies for DS-leukemias along with their outcome with emphasis on challenges with chemotherapy-related toxicities in children with DS. We focus on the mechanisms of initiation and progression of leukemia in children with DS and highlight the novel molecular targets with greater success in preclinical trials that have the potential to progress to the clinic.


Assuntos
Síndrome de Down , Leucemia Megacarioblástica Aguda , Criança , Animais , Humanos , Síndrome de Down/complicações , Síndrome de Down/genética , Síndrome de Down/terapia , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Leucemia Megacarioblástica Aguda/genética , Fator de Transcrição GATA1/genética , Mutação , Recidiva , Biologia
7.
Exp Eye Res ; 115: 113-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23810808

RESUMO

Proliferative vitreo retinopathy (PVR) is associated with extracellular matrix membrane (ECM) formation on the neural retina and disruption of the multilayered retinal architecture leading to distorted vision and blindness. During disease progression in PVR, retinal pigmented epithelial cells (RPE) lose cell-cell adhesion, undergo epithelial-to-mesenchymal transition (EMT), and deposit ECM leading to tissue fibrosis. The EMT process is mediated via exposure to vitreous cytokines and growth factors such as TGF-ß2. Previous studies have shown that Na,K-ATPase is required for maintaining a normal polarized epithelial phenotype and that decreased Na,K-ATPase function and subunit levels are associated with TGF-ß1-mediated EMT in kidney cells. In contrast to the basolateral localization of Na,K-ATPase in most epithelia, including kidney, Na,K-ATPase is found on the apical membrane in RPE cells. We now show that EMT is also associated with altered Na,K-ATPase expression in RPE cells. TGF-ß2 treatment of ARPE-19 cells resulted in a time-dependent decrease in Na,K-ATPase ß1 mRNA and protein levels while Na,K-ATPase α1 levels, Na,K-ATPase activity, and intracellular sodium levels remained largely unchanged. In TGF-ß2-treated cells reduced Na,K-ATPase ß1 mRNA inversely correlated with HIF-1α levels and analysis of the Na,K-ATPase ß1 promoter revealed a putative hypoxia response element (HRE). HIF-1α bound to the Na,K-ATPase ß1 promoter and inhibiting the activity of HIF-1α blocked the TGF-ß2 mediated Na,K-ATPase ß1 decrease suggesting that HIF-1α plays a potential role in Na,K-ATPase ß1 regulation during EMT in RPE cells. Furthermore, knockdown of Na,K-ATPase ß1 in ARPE-19 cells was associated with a change in cell morphology from epithelial to mesenchymal and induction of EMT markers such as α-smooth muscle actin and fibronectin, suggesting that loss of Na,K-ATPase ß1 is a potential contributor to TGF-ß2-mediated EMT in RPE cells.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio Pigmentado da Retina/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/fisiologia , Epitélio/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Immunoblotting , Microscopia Confocal , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retinaldeído/metabolismo , Proteína Smad3/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Transfecção , Fator de Crescimento Transformador beta1/farmacologia
8.
Mol Pharm ; 10(6): 2199-210, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23194373

RESUMO

Nanotechnology approaches have tremendous potential for enhancing treatment efficacy with lower doses of chemotherapeutics. Nanoparticle (NP)-based drug delivery approaches are poorly developed for childhood leukemia. Dexamethasone (Dex) is one of the most common chemotherapeutic drugs used in the treatment of childhood leukemia. In this study, we encapsulated Dex in polymeric NPs and validated their antileukemic potential in vitro and in vivo. NPs with an average diameter of 110 nm were assembled from an amphiphilic block copolymer of poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) bearing pendant cyclic ketals (ECT2). The blank NPs were nontoxic to cultured cells in vitro and to mice in vivo. Encapsulation of Dex into the NPs (Dex-NP) did not compromise the bioactivity of the drug. Dex-NPs induced glucocorticoid phosphorylation and showed cytotoxicity similar to the free Dex in leukemic cells. Studies using NPs labeled with fluorescent dyes revealed leukemic cell surface binding and internalization. In vivo biodistribution studies showed NP accumulation in the liver and spleen with subsequent clearance of the particles with time. In a preclinical model of leukemia, Dex-NPs significantly improved the quality of life and survival of mice as compared to the free drug. To our knowledge, this is the first report showing the efficacy of polymeric NPs to deliver Dex to potentially treat childhood leukemia and reveals that low doses of Dex should be sufficient for inducing cell death and improving survival.


Assuntos
Dexametasona/química , Dexametasona/uso terapêutico , Leucemia/tratamento farmacológico , Nanomedicina/métodos , Nanopartículas/química , Polímeros/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Poliésteres/química , Polietilenoglicóis/química , Baço/metabolismo
9.
Blood Adv ; 7(16): 4403-4413, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37561544

RESUMO

Despite recent advances in the treatment of hematologic malignancies, relapse still remains a consistent issue. One of the primary contributors to relapse is the bone marrow microenvironment providing a sanctuary to malignant cells. These cells interact with bone marrow components such as osteoblasts and stromal cells, extracellular matrix proteins, and soluble factors. These interactions, mediated by the cell surface proteins like cellular adhesion molecules (CAMs), induce intracellular signaling that leads to the development of bone marrow microenvironment-induced chemoprotection (BMC). Although extensive study has gone into these CAMs, including the development of targeted therapies, very little focus in hematologic malignancies has been put on a family of cell surface proteins that are just as important for mediating bone marrow interactions: the transmembrane 4 superfamily (tetraspanins; TSPANs). TSPANs are known to be important mediators of microenvironmental interactions and metastasis based on numerous studies in solid tumors. Recently, evidence of their possible role in hematologic malignancies, specifically in the regulation of cellular adhesion, bone marrow homing, intracellular signaling, and stem cell dynamics in malignant hematologic cells has come to light. Many of these effects are facilitated by associations with CAMs and other receptors on the cell surface in TSPAN-enriched microdomains. This could suggest that TSPANs play an important role in mediating BMC in hematologic malignancies and could be used as therapeutic targets. In this review, we discuss TSPAN structure and function in hematologic cells, their interactions with different cell surface and signaling proteins, and possible ways to target/inhibit their effects.


Assuntos
Medula Óssea , Neoplasias Hematológicas , Humanos , Medula Óssea/patologia , Recidiva Local de Neoplasia , Tetraspaninas , Moléculas de Adesão Celular/metabolismo , Neoplasias Hematológicas/patologia , Proteínas de Membrana/metabolismo , Microambiente Tumoral
10.
Cancers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370721

RESUMO

Advances in therapies of pediatric acute myeloid leukemia (AML) have been minimal in recent decades. Although 82% of patients will have an initial remission after intensive therapy, approximately 40% will relapse. KMT2A is the most common chromosomal translocation in AML and has a poor prognosis resulting in high relapse rates and low chemotherapy efficacy. Novel targeted approaches are needed to increase sensitivity to chemotherapy. Recent studies have shown how interactions within the bone marrow (BM) microenvironment help AML cells evade chemotherapy and contribute to relapse by promoting leukemic blast survival. This study investigates how DNA hypomethylating agent azacitidine and histone deacetylase inhibitor panobinostat synergistically overcome BM niche-induced chemoprotection modulated by stromal, endothelial, and mesenchymal stem cells and the extracellular matrix (ECM). We show that direct contact between AML cells and BM components mediates chemoprotection. We demonstrate that azacitidine and panobinostat synergistically sensitize MV4;11 cells and KMT2A rearranged pediatric patient-derived xenograft lines to cytarabine in multicell coculture. Treatment with the epigenetic drug combination reduced leukemic cell association with multicell monolayer and ECM in vitro and increased mobilization of leukemic cells from the BM in vivo. Finally, we show that pretreatment with the epigenetic drug combination improves the efficacy of chemotherapy in vivo.

11.
Exp Cell Res ; 317(6): 838-48, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21211535

RESUMO

High levels of the soluble form of E-cadherin can be found in the serum of cancer patients and are associated with poor prognosis. Despite the possible predictive value of soluble E-cadherin, little is understood concerning its patho-physiological consequences in tumor progression. In this study, we show that soluble E-cadherin facilitates cell survival via functional interaction with cellular E-cadherin. Exposure of cells to a recombinant form of soluble E-cadherin, at a concentration found in cancer patient's serum, prevents apoptosis due to serum/growth factor withdrawal, and inhibits epithelial lumen formation, a process that requires apoptosis. Further, soluble E-cadherin-mediated cell survival involves activation of the epidermal growth factor receptor (EGFR) and EGFR-mediated activation of both phosphoinositide-3 kinase (PI3K)/AKT and ERK1/2 signaling pathways. These results are evidence of a complex functional interplay between EGFR and E-cadherin and also suggest that the presence of soluble E-cadherin in cancer patients' sera might have relevance to cell survival and tumor progression.


Assuntos
Apoptose/efeitos dos fármacos , Caderinas/farmacologia , Receptores ErbB/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Caderinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Solubilidade
12.
J Clin Med ; 11(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35407531

RESUMO

Acute myeloid leukemia (AML) in children remains deadly, despite the use of maximally intensive therapy. Because leukemia stem cells (LSCs) significantly contribute to chemoresistance and relapse, therapies that specifically target the LSCs are likely to be more beneficial in improving outcome. LSCs are known to have high telomerase activity and telomerase activity is negatively correlated with survival in pediatric AML. We evaluated the preclinical efficacy of imetelstat, an oligonucleotide inhibitor of telomerase activity in patient-derived xenograft (PDX) lines of pediatric AML. Imetelstat treatment significantly increased apoptosis/death of the LSC population in a dose-dependent manner in six pediatric AML PDX lines ex vivo, while it had limited activity on the stem cell population in normal bone marrow specimens. These results were validated in vivo in two distinct PDX models wherein imetelstat as single agent or in combination with chemotherapy greatly reduced the LSC percentage and prolonged median survival. Imetelstat combination with DNA hypomethylating agent azacitidine was also beneficial in extending survival. Secondary transplantation experiments showed delayed engraftment and improved survival of mice receiving imetelstat-treated cells, confirming the diminished LSC population. Thus, our data suggest that imetelstat represents an effective therapeutic strategy for pediatric AML.

13.
Cells ; 11(4)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35203280

RESUMO

Children with Down syndrome (DS) have a high risk for acute myeloid leukemia (DS-ML). Genomic characterization of DS-ML blasts showed the presence of unique mutations in GATA1, an essential hematopoietic transcription factor, leading to the production of a truncated from of GATA1 (GATA1s). GATA1s, together with trisomy 21, is sufficient to develop a pre-leukemic condition called transient abnormal myelopoiesis (TAM). Approximately 30% of these cases progress into DS-ML by acquisition of additional somatic mutations in a stepwise manner. We previously developed a model for TAM by introducing disease-specific GATA1 mutation in trisomy 21-induced pluripotent stem cells (iPSCs), leading to the production of N-terminally truncated short form of GATA1 (GATA1s). In this model, we used CRISPR/Cas9 to introduce a co-operating mutation in STAG2, a member of the cohesin complex recurrently mutated in DS-ML but not in TAM. Hematopoietic differentiation of GATA1 STAG2 double-mutant iPSC lines confirmed GATA1s expression and the loss of functional STAG2 protein, leading to enhanced production of immature megakaryocytic population compared to GATA1 mutant alone. Megakaryocyte-specific lineage expansion of the double-mutant HSPCs exhibited close resemblance to the DS-ML immunophenotype. Transcriptome analysis showed that GATA1 mutation resulted in downregulation of megakaryocytic and erythrocytic differentiation pathways and interferon α/ß signaling, along with an upregulation of pathways promoting myeloid differentiation such as toll-like receptor cascade. The co-occurrence of STAG2 knockout partially reverted the expression of genes involved in myeloid differentiation, likely leading to enhanced self-renewal and promoting leukemogenesis. In conclusion, we developed a DS-ML model via hematopoietic differentiation of gene-targeted iPSCs bearing trisomy 21.


Assuntos
Proteínas de Ciclo Celular , Síndrome de Down , Fator de Transcrição GATA1 , Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Proteínas de Ciclo Celular/genética , Criança , Síndrome de Down/genética , Fator de Transcrição GATA1/genética , Humanos , Leucemia Mieloide Aguda/genética , Reação Leucemoide , Mutação/genética , Trissomia/genética
14.
Cancers (Basel) ; 14(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326701

RESUMO

Modern targeted cancer therapies rely on the overexpression of tumor associated antigens with very little to no expression in normal cell types. Mesothelin is a glycosylphosphatidylinositol-anchored cell surface protein that has been identified in many different tumor types, including lung adenocarcinomas, ovarian carcinomas, and most recently in hematological malignancies, including acute myeloid leukemia (AML). Although the function of mesothelin is widely unknown, interactions with MUC16/CA125 indicate that mesothelin plays a role in the regulation of proliferation, growth, and adhesion signaling. Most research on mesothelin currently focuses on utilizing mesothelin to design targeted cancer therapies such as monoclonal antibodies, antibody-drug conjugates, chimeric antigen receptor T and NK cells, bispecific T cell engaging molecules, and targeted alpha therapies, amongst others. Both in vitro and in vivo studies using different immunotherapeutic modalities in mesothelin-positive AML models highlight the potential impact of this approach as a unique opportunity to treat hard-to-cure AML.

15.
J Clin Med ; 11(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268423

RESUMO

Children with acute myeloid leukemia (AML) have a poor prognosis despite the intensification of chemotherapy. Future efforts to improve outcomes should focus on more precise targeting of leukemia cells. CD123, or IL3RA, is expressed on the surface of nearly all pediatric AML samples and is a high-priority target for immunotherapy. The efficacy of an investigational dual-affinity retargeting antibody (DART) molecule (CD123 × CD3; MGD006 or flotetuzumab) was assessed in two distinct patient-derived xenograft (PDX) models of pediatric AML. MGD006 simultaneously binds to CD123 on target cells and CD3 on effector T cells, thereby activating T cells and redirecting them to induce cytotoxicity in target cells. The concurrent treatment of cytarabine and MGD006 was performed to determine the effect of cytarabine on T-cell counts and MGD006 activity. Treatment with MGD006 along with an allogeneic human T-cell infusion to act as effector cells induced durable responses in both PDX models, with CD123 positivity. This effect was sustained in mice treated with a combination of MGD006 and cytarabine in the presence of T cells. MGD006 enhanced T-cell proliferation and decreased the burden of AML blasts in the peripheral blood with or without cytarabine treatment. These data demonstrate the efficacy of MGD006 in prolonging survival in pediatric AML PDX models in the presence of effector T cells and show that the inclusion of cytarabine in the treatment regimen does not interfere with MGD006 activity.

16.
Blood Rev ; 48: 100787, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33317863

RESUMO

Hematopoietic stem and progenitor cells located in the bone marrow lay the foundation for multiple lineages of mature hematologic cells. Bone marrow niches are architecturally complex with specific cellular, physiochemical, and biomechanical factors. Increasing evidence suggests that the bone marrow microenvironment contributes to the pathogenesis of hematological neoplasms. Numerous studies have deciphered the role of genetic mutations and chromosomal translocations in the development hematologic malignancies. Significant progress has also been made in understanding how the cellular components and cytokine interactions within the bone marrow microenvironment promote the evolution of hematologic cancers. Although the extracellular matrix is known to be a key player in the pathogenesis of various diseases, it's role in the progression of hematologic malignancies is less understood. In this review, we discuss the interactions between the extracellular matrix and malignant cells, and provide an overview of the role of extracellular matrix remodeling in sustaining hematologic malignancies.


Assuntos
Suscetibilidade a Doenças , Matriz Extracelular/metabolismo , Neoplasias Hematológicas/etiologia , Neoplasias Hematológicas/metabolismo , Animais , Biomarcadores , Medula Óssea/metabolismo , Medula Óssea/patologia , Citocinas/metabolismo , Gerenciamento Clínico , Progressão da Doença , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/terapia , Humanos , Mutação , Transdução de Sinais , Nicho de Células-Tronco , Microambiente Tumoral
17.
Cells ; 10(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685678

RESUMO

In vitro modeling of hematological malignancies not only provides insights into the influence of genetic aberrations on cellular and molecular mechanisms involved in disease progression but also aids development and evaluation of therapeutic agents. Owing to their self-renewal and differentiation capacity, induced pluripotent stem cells (iPSCs) have emerged as a potential source of short in supply disease-specific human cells of the hematopoietic lineage. Patient-derived iPSCs can recapitulate the disease severity and spectrum of prognosis dictated by the genetic variation among patients and can be used for drug screening and studying clonal evolution. However, this approach lacks the ability to model the early phases of the disease leading to cancer. The advent of genetic editing technology has promoted the generation of precise isogenic iPSC disease models to address questions regarding the underlying genetic mechanism of disease initiation and progression. In this review, we discuss the use of iPSC disease modeling in hematological diseases, where there is lack of patient sample availability and/or difficulty of engraftment to generate animal models. Furthermore, we describe the power of combining iPSC and precise gene editing to elucidate the underlying mechanism of initiation and progression of various hematological malignancies. Finally, we discuss the power of iPSC disease modeling in developing and testing novel therapies in a high throughput setting.


Assuntos
Edição de Genes , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Hematopoese , Humanos
18.
Biomater Sci ; 9(18): 6266-6281, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34369483

RESUMO

Induced pluripotent stem cells (iPSCs) provide an extraordinary tool for disease modeling owing to their potential to differentiate into the desired cell type. The differentiation of iPSCs is typically performed on 2-dimensional monolayers of stromal cell or animal tissue derived extracellular matrices. Recent advancements in disease modeling have utilized iPSCs in 3-dimensional (3D) cultures to study diseases such as muscular dystrophy, cardiomyopathy, and pulmonary fibrosis. However, these approaches are yet to be explored in modeling the hematological malignancies. Transient myeloproliferative disorder (TMD) is a preleukemic stage, which is induced in 10-20% of children with trisomy 21 possessing the pathognomonic mutation in the transcription factor GATA1. In this study, we established a synthetic 3D iPSC culture system for modeling TMD via hematopoietic differentiation of customized iPSCs. A chemically cross-linkable PEG hydrogel decorated with integrin binding peptide was found to be permissive of hematopoietic differentiation of iPSCs. It provided a cost-effective system for the generation of hematopoietic stem and progenitor cells (HSPCs) with higher yield of early HSPCs compared to traditional 2D culture on Matrigel coated dishes. Characterization of the HSPCs produced from the iPSC lines cultured in 3D showed that the erythroid population was reduced whereas the megakaryoid and myeloid populations were significantly increased in GATA1 mutant trisomic line compared to disomic or trisomic lines with wild-type GATA1, consistent with TMD characteristics. In conclusion, we have identified a cost-effective tunable 3D hydrogel system to model TMD.


Assuntos
Síndrome de Down , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Transtornos Mieloproliferativos , Animais , Diferenciação Celular , Síndrome de Down/genética , Hidrogéis , Transtornos Mieloproliferativos/genética
19.
Cancers (Basel) ; 13(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885074

RESUMO

Advances in the treatment of pediatric AML have been modest over the past four decades. Despite maximally intensive therapy, approximately 40% of patients will relapse. Novel targeted therapies are needed to improve outcomes. We identified mesothelin (MSLN), a well-validated target overexpressed in some adult malignancies, to be highly expressed on the leukemic cell surface in a subset of pediatric AML patients. The lack of expression on normal bone marrow cells makes MSLN a viable target for immunotherapies such as T-cell engaging bispecific antibodies (BsAbs) that combine two distinct antibody-variable regions into a single molecule targeting a cancer-specific antigen and the T-cell co-receptor CD3. Using antibody single-chain variable region (scFv) sequences derived from amatuximab-recognizing MSLN, and from either blinatumomab or AMG330 targeting CD3, we engineered and expressed two MSLN/CD3-targeting BsAbs: MSLNAMA-CD3L2K and MSLNAMA-CD3AMG, respectively. Both BsAbs promoted T-cell activation and reduced leukemic burden in MV4;11:MSLN xenografted mice, but not in those transplanted with MSLN-negative parental MV4;11 cells. MSLNAMA-CD3AMG induced complete remission in NTPL-146 and DF-5 patient-derived xenograft models. These data validate the in vivo efficacy and specificity of MSLN-targeting BsAbs. Because prior MSLN-directed therapies appeared safe in humans, MSLN-targeting BsAbs could be ideal immunotherapies for MSLN-positive pediatric AML patients.

20.
Blood Adv ; 5(9): 2350-2361, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33938941

RESUMO

In an effort to identify acute myeloid leukemia (AML)-restricted targets for therapeutic development in AML, we analyzed the transcriptomes of 2051 children and young adults with AML and compared the expression profile with normal marrow specimens. This analysis identified a large cohort of AML-restricted genes with high expression in AML, but low to no expression in normal hematopoiesis. Mesothelin (MSLN), a known therapeutic target in solid tumors, was shown to be highly overexpressed in 36% of the AML cohort (range, 5-1077.6 transcripts per million [TPM]) and virtually absent in normal marrow (range, 0.1-10.7 TPM). We verified MSLN transcript expression by quantitative reverse transcription polymerase chain reaction, confirmed cell surface protein expression on leukemic blasts by multidimensional flow cytometry, and demonstrated that MSLN expression was associated with promoter hypomethylation. MSLN was highly expressed in patients with KMT2A rearrangements (P < .001), core-binding factor fusions [inv(16)/t(16;16), P < .001; t(8;21), P < .001], and extramedullary disease (P = .001). We also demonstrated the presence of soluble MSLN in diagnostic serum specimens using an MSLN-directed enzyme-linked immunosorbent assay. In vitro and in vivo preclinical efficacy of the MSLN-directed antibody-drug conjugates (ADCs) anetumab ravtansine and anti-MSLN-DGN462 were evaluated in MSLN+ leukemia cell lines in vitro and in vivo, as well as in patient-derived xenografts. Treatment with ADCs resulted in potent target-dependent cytotoxicity in MSLN+ AML. In this study, we demonstrate that MSLN is expressed in a significant proportion of patients with AML and holds significant promise as a diagnostic and therapeutic target in AML, and that MSLN-directed therapeutic strategies, including ADCs, warrant further clinical investigation.


Assuntos
Leucemia Mieloide Aguda , Criança , Proteínas Ligadas por GPI/genética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mesotelina , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA