Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283240

RESUMO

Cancer vaccine development is inhibited by a lack of strategies for directing dendritic cell (DC) induction of effective tumor-specific cellular immunity. Pathogen engagement of DC lectins and toll-like receptors (TLRs) is thought to shape immunity by directing T cell function. Controlling downstream responses, however, remains a major challenge. A critical goal in advancing vaccine development involves the identification of receptors that drive type 1 cellular immunity. The immune system monitors cells for aberrant glycosylation (a sign of a foreign entity), but potent activation occurs when a second signal, such as single-stranded RNA or lipopolysaccharide, is present to activate TLR signaling. To exploit dual signaling, we engineered a glycan-costumed virus-like particle (VLP) vaccine that displays a DC-SIGN-selective aryl mannose ligand and encapsulates TLR7 agonists. These VLPs deliver programmable peptide antigens to induce robust DC activation and type 1 cellular immunity. In contrast, VLPs lacking this critical DC-SIGN ligand promoted DC-mediated humoral immunity, offering limited tumor control. Vaccination with glycan-costumed VLPs generated tumor antigen-specific Th1 CD4+ and CD8+ T cells that infiltrated solid tumors, significantly inhibiting tumor growth in a murine melanoma model. The tailored VLPs also afforded protection against the reintroduction of tumor cells. Thus, DC lectin-driven immune reprogramming, combined with the modular programmability of VLP platforms, provides a promising framework for directing cellular immunity to advance cancer immunotherapies and vaccines.

2.
bioRxiv ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38293025

RESUMO

Cancer vaccine development is inhibited by a lack of strategies for directing dendritic cell (DC) induction of effective tumor-specific cellular immunity. Pathogen engagement of DC lectins and toll-like receptors (TLRs) shapes immunity by directing T cell function. Strategies to activate specific DC signaling pathways via targeted receptor engagement are crucial to unlocking type 1 cellular immunity. Here, we engineered a glycan-costumed virus-like particle (VLP) vaccine that delivers programmable peptide antigens to induce tumor-specific cellular immunity in vivo. VLPs encapsulating TLR7 agonists and decorated with a selective mannose-derived ligand for the lectin DC-SIGN induced robust DC activation and type 1 cellular immunity, whereas VLPs lacking this key DC-SIGN ligand failed to promote DC-mediated immunity. Vaccination with glycan-costumed VLPs generated tumor antigen-specific Th1 CD4+ and CD8+ T cells that infiltrated solid tumors, inhibiting tumor growth in a murine melanoma model. Thus, VLPs employing lectin-driven immune reprogramming provide a framework for advancing cancer immunotherapies.

3.
Magn Reson Imaging ; 94: 151-160, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36216145

RESUMO

The benefits of performing locally low-rank (LLR) reconstructions on subsampled diffusion weighted and diffusion kurtosis imaging data employing spatiotemporal encoding (SPEN) methods, is investigated. SPEN allows for self-referenced correction of motion-induced phase errors in case of interleaved diffusion-oriented acquisitions, and allows one to overcome distortions otherwise observed along EPI's phase-encoded dimension. In combination with LLR-based reconstructions of the pooled imaging data and with a joint subsampling of b-weighted and interleaved images, additional improvements in terms of sensitivity as well as shortened acquisition times are demonstrated, without noticeable penalties. Details on how the LLR-regularized, subspace-constrained image reconstructions were adapted to SPEN are given; the improvements introduced by adopting these reconstruction frameworks for the accelerated acquisition of diffusivity and of kurtosis imaging data in both relatively homogeneous regions like the human brain and in more challenging regions like the human prostate, are presented and discussed within the context of similar efforts in the field.


Assuntos
Algoritmos , Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA