RESUMO
Moracin C from Morus alba fruits, also known as the mulberry, has been proven to exhibit inhibitory activities against lipoxygenase enzymes, TNF-α and interleukin-1ß secretion, and proprotein convertase subtilisin/kexin type 9 expression. Despite the various pharmacological activities of moracin C, its pharmacokinetic characteristics have yet to be reported. Here, the pharmacokinetic parameters and tissue distribution of moracin C have been investigated in mice, and the plasma concentration of moracin C with multiple dosage regimens was simulated via pharmacokinetic modeling. Our results showed that moracin C was rapidly and well absorbed in the intestinal tract, and was highly distributed in the gastrointestinal tract, liver, kidneys, and lungs. Moracin C was distributed in the ileum, cecum, colon, and liver at a relatively high concentration compared with its plasma concentration. It was extensively metabolized in the liver and intestine, and its glucuronidated metabolites were proposed. In addition, the simulated plasma concentrations of moracin C upon multiple treatments (i.e., every 12 and 24 h) were suggested. We suggest that the pharmacokinetic characteristics of moracin C would be helpful to select a disease model for in vivo evaluation. The simulated moracin C concentrations under various dosage regimens also provide helpful knowledge to support its pharmacological effect.
Assuntos
Benzofuranos , Morus , Estilbenos , Animais , Camundongos , Extratos VegetaisRESUMO
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key factor in several cardiovascular diseases, as it is responsible for the elevation of circulating low-density lipoprotein cholesterol (LDL-C) levels in blood plasma by direct interaction with the LDL receptor. The development of orally available drugs to inhibit this PCSK9-LDLR interaction is a highly desirable objective. Here, we report the synthesis of naturally occurring moracin compounds and their derivatives with a 2-arylbenzofuran motif to inhibit PCSK9 expression. In addition, we discuss a short approach involving the three-step synthesis of moracin C and a divergent method to obtain various analogs from one starting material. Among the tested derivatives, compound 7 (97.1%) was identified as a more potent inhibitor of PCSK9 expression in HepG2 cells than berberine (60.9%). These results provide a better understanding of the structure-activity relationships of moracin derivatives for the inhibition of PCSK9 expression in human hepatocytes.