Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473731

RESUMO

Endothelial cells in steady laminar flow assume a healthy, quiescent phenotype, while endothelial cells in oscillating disturbed flow become dysfunctional. Since endothelial dysfunction leads to atherosclerosis and cardiovascular disease, it is important to understand the mechanisms by which endothelial cells change their function in varied flow environments. Endothelial metabolism has recently been proven a powerful tool to regulate vascular function. Endothelial cells generate most of their energy from glycolysis, and steady laminar flow may reduce endothelial glycolytic flux. We hypothesized that steady laminar but not oscillating disturbed flow would reduce glycolytic flux and alter glycolytic side branch pathways. In this study, we exposed human umbilical vein endothelial cells to static culture, steady laminar flow (20 dynes/cm2 shear stress), or oscillating disturbed flow (4 ± 6 dynes/cm2 shear stress) for 24 h using a cone-and-plate device. We then measured glucose and lactate uptake and secretion, respectively, and glycolytic metabolites. Finally, we explored changes in the expression and protein levels of endothelial glycolytic enzymes. Our data show that endothelial cells in steady laminar flow had decreased glucose uptake and 13C labeling of glycolytic metabolites while cells in oscillating disturbed flow did not. Steady laminar flow did not significantly change glycolytic enzyme gene or protein expression, suggesting that glycolysis may be altered through enzyme activity. Flow also modulated glycolytic side branch pathways involved in proteoglycan and glycosaminoglycan synthesis, as well as oxidative stress. These flow-induced changes in endothelial glucose metabolism may impact the atheroprone endothelial phenotype in oscillating disturbed flow.


Assuntos
Antioxidantes , Aterosclerose , Humanos , Antioxidantes/metabolismo , Células Cultivadas , Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glicólise
3.
Biophys J ; 113(3): 645-655, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28793219

RESUMO

Arterial stiffness and inflammation are associated with atherosclerosis, and each have individually been shown to increase endothelial monolayer tension and permeability. The objective of this study was to determine if substrate stiffness enhanced endothelial monolayer tension and permeability in response to inflammatory cytokines. Porcine aortic endothelial cells were cultured at confluence on polyacrylamide gels of varying stiffness and treated with either tumor necrosis factor-α (TNFα) or thrombin. Monolayer tension was measured through vinculin localization at the cell membrane, traction force microscopy, and phosphorylated myosin light chain quantity and actin fiber colocalization. Cell permeability was measured by cell-cell junction confocal microscopy and a dextran permeability assay. When treated with TNFα or thrombin, endothelial monolayers on stiffer substrates showed increased traction forces, vinculin at the cell membrane, and vinculin phosphorylation, suggesting elevated monolayer tension. Interestingly, VE-cadherin shifted toward a smaller molecular weight in endothelial monolayers on softer substrates, which may relate to increased VE-cadherin endocytosis and degradation. Phosphorylated myosin light chain colocalization with actin stress fibers increased in endothelial monolayers treated with TNFα or thrombin on stiffer substrates, indicating elevated cell monolayer contractility. Endothelial monolayers also developed focal adherens intercellular junctions and became more permeable when cultured on stiffer substrates in the presence of the inflammatory cytokines. Whereas each of these effects was likely mitigated by Rho/ROCK, Rho/ROCK pathway inhibition via Y27632 disrupted cell-cell junction morphology, showing that cell contractility is required to maintain adherens junction integrity. These data suggest that stiff substrates change intercellular junction protein localization and degradation, which may counteract the inflammation-induced increase in endothelial monolayer tension and thereby moderate inflammation-induced junction loss and associated endothelial monolayer permeability on stiffer substrates.


Assuntos
Células Endoteliais/metabolismo , Células Endoteliais/patologia , Estresse Mecânico , Rigidez Vascular , Animais , Fenômenos Biomecânicos , Células Endoteliais/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Permeabilidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Suínos , Trombina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Rigidez Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
4.
Metabolites ; 11(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917224

RESUMO

Disrupted endothelial metabolism is linked to endothelial dysfunction and cardiovascular disease. Targeted metabolic inhibitors are potential therapeutics; however, their systemic impact on endothelial metabolism remains unknown. In this study, we combined stable isotope labeling with 13C metabolic flux analysis (13C MFA) to determine how targeted inhibition of the polyol (fidarestat), pentose phosphate (DHEA), and hexosamine biosynthetic (azaserine) pathways alters endothelial metabolism. Glucose, glutamine, and a four-carbon input to the malate shuttle were important carbon sources in the baseline human umbilical vein endothelial cell (HUVEC) 13C MFA model. We observed two to three times higher glutamine uptake in fidarestat and azaserine-treated cells. Fidarestat and DHEA-treated HUVEC showed decreased 13C enrichment of glycolytic and TCA metabolites and amino acids. Azaserine-treated HUVEC primarily showed 13C enrichment differences in UDP-GlcNAc. 13C MFA estimated decreased pentose phosphate pathway flux and increased TCA activity with reversed malate shuttle direction in fidarestat and DHEA-treated HUVEC. In contrast, 13C MFA estimated increases in both pentose phosphate pathway and TCA activity in azaserine-treated cells. These data show the potential importance of endothelial malate shuttle activity and suggest that inhibiting glycolytic side branch pathways can change the metabolic network, highlighting the need to study systemic metabolic therapeutic effects.

5.
Ann Biomed Eng ; 47(4): 1078-1093, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30689065

RESUMO

Fibroblast growth factor 2 (FGF2), an important regulator of angiogenesis, binds to endothelial cell (EC) surface FGF receptors (FGFRs) and heparan sulfate proteoglycans (HSPGs). FGF2 binding kinetics have been predominantly studied in static culture; however, the endothelium is constantly exposed to flow which may affect FGF2 binding. We therefore used experimental and computational techniques to study how EC FGF2 binding changes in flow. ECs adapted to 24 h of flow demonstrated biphasic FGF2-HSPG binding, with FGF2-HSPG complexes increasing up to 20 dynes/cm2 shear stress and then decreasing at higher shear stresses. To understand how adaptive EC surface remodeling in response to shear stress may affect FGF2 binding to FGFR and HSPG, we implemented a computational model to predict the relative effects of flow-induced surface receptor changes. We then fit the computational model to the experimental data using relationships between HSPG availability and FGF2-HSPG dissociation and flow that were developed from a basement membrane study, as well as including HSPG production. These studies suggest that FGF2 binding kinetics are altered in flow-adapted ECs due to changes in cell surface receptor quantity, availability, and binding kinetics, which may affect cell growth factor response.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Modelos Biológicos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Estresse Mecânico , Animais , Células Cultivadas , Simulação por Computador , Fosforilação , Resistência ao Cisalhamento , Suínos
6.
Appl Bionics Biomech ; 2017: 9040161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659710

RESUMO

Vitronectin is a matricellular protein that plays an important role in both coagulation and angiogenesis through its effects on cell adhesion and the plasminogen system. Vitronectin is known to bind to endothelial cells upon integrin activation. However, the effect of integrin activation by shear stress and growth factors on cell-associated vitronectin and plasminogen system activity has not yet been studied. We therefore exposed human umbilical vein endothelial cells to steady laminar flow, oscillating disturbed flow, or fibroblast growth factor-2 (FGF-2) for 24 hours. We then measured cell-associated vitronectin by Western blot and plasminogen system activity using a Chromozym assay. Steady laminar flow, oscillating disturbed flow, and FGF-2 all increased cell-associated vitronectin, although the vitronectin molecular weight varied among the different conditions. FGF-2 also increased cell-associated vitronectin in microvascular endothelial cells and vascular smooth muscle cells. The increase in cell-associated vitronectin increased plasminogen system activity. Confocal microscopy showed that vitronectin was primarily located in the basal and intracellular regions. αvß5 integrin inhibition via genistein, an anti-αvß5 antibody, or ß5 siRNA knockdown abrogated the FGF-2-induced increase in cell-associated vitronectin and increased plasminogen system activity. These data show that shear stress and growth factors increase cell-associated vitronectin through integrin activation, which may affect coagulation and angiogenesis.

7.
ACS Biomater Sci Eng ; 3(11): 2999-3006, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33418720

RESUMO

Endothelial cell interactions with normal and cancerous breast epithelial cells have been widely studied in tissue growth and development, as well as in angiogenesis and metastasis. Despite the understanding that 3D multicellular architecture is critical to the cell phenotype, 3D vascular structures have not yet been cocultured with 3D breast spheroids in vitro. The objective of this study was therefore to create a hierarchical, multiscale model of vascular endothelial-breast epithelial cell interactions in which both cell types were assembled into their 3D architectures. The model was successfully fabricated by adding preformed breast spheroids onto preformed endothelial tube-like networks. Through this model, we observed that breast spheroids maintain vascular tube-like networks. Over time, breast epithelial cells migrate out of the spheroid structure along the endothelial networks. This research shows that 3D cell structures serve as an important building block for creating multicellular coculture models to study physiologically relevant cell-cell interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA