Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 144(8): 2361-2374, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34145876

RESUMO

Autoantibodies are a hallmark of numerous neurological disorders, including multiple sclerosis, autoimmune encephalitides and neuromyelitis optica. Whilst well understood in peripheral myeloid cells, the pathophysiological significance of autoantibody-induced Fc receptor signalling in microglia remains unknown, in part due to the lack of a robust in vivo model. Moreover, the application of therapeutic antibodies for neurodegenerative disease also highlights the importance of understanding Fc receptor signalling in microglia. Here, we describe a novel in vivo experimental paradigm that allows for selective engagement of Fc receptors within the CNS by peripherally injecting anti-myelin oligodendrocyte glycoprotein (MOG) monoclonal antibodies into normal wild-type mice. MOG antigen-bound immunoglobulins were detected throughout the CNS and triggered a rapid and tightly regulated proliferative response in both brain and spinal cord microglia. This microglial response was abrogated when anti-MOG antibodies were deprived of Fc receptor effector function or injected into Fcγ receptor knockout mice and was associated with the downregulation of Fc receptors in microglia, but not peripheral myeloid cells, establishing that this response was dependent on central Fc receptor engagement. Downstream of the Fc receptors, BTK was a required signalling node for this response, as microglia proliferation was amplified in BtkE41K knock-in mice expressing a constitutively active form of the enzyme and blunted in mice treated with a CNS-penetrant small molecule inhibitor of BTK. Finally, this response was associated with transient and stringently regulated changes in gene expression predominantly related to cellular proliferation, which markedly differed from transcriptional programs typically associated with Fc receptor engagement in peripheral myeloid cells. Together, these results establish a physiologically-meaningful functional response to Fc receptor and BTK signalling in microglia, while providing a novel in vivo tool to further dissect the roles of microglia-specific Fc receptor and BTK-driven responses to both pathogenic and therapeutic antibodies in CNS homeostasis and disease.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Autoanticorpos/imunologia , Encéfalo/patologia , Microglia/patologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Receptores Fc/metabolismo , Medula Espinal/patologia , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Proliferação de Células/fisiologia , Camundongos , Microglia/imunologia , Microglia/metabolismo , Medula Espinal/imunologia , Medula Espinal/metabolismo
2.
J Cell Physiol ; 229(4): 489-501, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24105843

RESUMO

Normal pregnancy is associated with systemic vasodilation and decreased vascular contraction, partly due to increased release of endothelium-derived vasodilator substances. Endothelin-1 (ET-1) is an endothelium-derived vasoconstrictor acting via endothelin receptor type A (ETA R) and possibly type B (ETB R) in vascular smooth muscle cells (VSMCs), with additional vasodilator effects via endothelial ETB R. However, the role of ET-1 receptor subtypes in the regulation of vascular function during pregnancy is unclear. We investigated whether the decreased vascular contraction during pregnancy reflects changes in the expression/activity of ETAR and ETBR. Contraction was measured in single aortic VSMCs isolated from virgin, mid-pregnant (mid-Preg, day 12), and late-Preg (day 19) Sprague-Dawley rats, and the mRNA expression, protein amount, tissue and cellular distribution of ETAR and ETBR were examined using RT-PCR, Western blots, immunohistochemistry, and immunofluorescence. Phenylephrine (Phe, 10(-5) M), KCl (51 mM), and ET-1 (10(-6) M) caused VSMC contraction that was in late-Preg < mid-Preg and virgin rats. In VSMCs treated with ETB R antagonist BQ788, ET-1 caused significant contraction that was still in late-Preg < mid-Preg and virgin rats. In VSMCs treated with the ETAR antagonist BQ123, ET-1 caused a small contraction; and the ETBR agonists IRL-1620 and sarafotoxin 6c (S6c) caused similar contraction that was in late-Preg < mid-Preg and virgin rats. RT-PCR revealed similar ETAR, but greater ETBR mRNA expression in pregnant versus virgin rats. Western blots revealed similar ETAR, and greater protein amount of ETBR in endothelium-intact vessels, but reduced ETBR in endothelium-denuded vessels of pregnant versus virgin rats. Immunohistochemistry revealed prominent ETBR staining in the intima, but reduced ETAR and ETBR in the aortic media of pregnant rats. Immunofluorescence signal for ETAR and ETBR was less in VSMCs of pregnant versus virgin rats. The pregnancy-associated decrease in ETAR- and ETBR-mediated VSMC contraction appears to involve downregulation of ETAR and ETBR expression/activity in VSM, and may play a role in the adaptive vasodilation during pregnancy.


Assuntos
Adaptação Fisiológica/fisiologia , Regulação da Expressão Gênica/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Animais , Aorta/citologia , Estro , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina A/genética , Receptor de Endotelina B/genética
3.
J Med Chem ; 67(10): 8122-8140, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712838

RESUMO

Multiple sclerosis (MS) is a chronic disease with an underlying pathology characterized by inflammation-driven neuronal loss, axonal injury, and demyelination. Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase and member of the TEC family of kinases, is involved in the regulation, migration, and functional activation of B cells and myeloid cells in the periphery and the central nervous system (CNS), cell types which are deemed central to the pathology contributing to disease progression in MS patients. Herein, we describe the discovery of BIIB129 (25), a structurally distinct and brain-penetrant targeted covalent inhibitor (TCI) of BTK with an unprecedented binding mode responsible for its high kinome selectivity. BIIB129 (25) demonstrated efficacy in disease-relevant preclinical in vivo models of B cell proliferation in the CNS, exhibits a favorable safety profile suitable for clinical development as an immunomodulating therapy for MS, and has a low projected total human daily dose.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Encéfalo , Esclerose Múltipla , Inibidores de Proteínas Quinases , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Esclerose Múltipla/tratamento farmacológico , Humanos , Animais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/química , Encéfalo/metabolismo , Camundongos , Descoberta de Drogas , Encefalomielite Autoimune Experimental/tratamento farmacológico , Ratos , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Feminino
4.
Zoology (Jena) ; 111(6): 433-41, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18565745

RESUMO

Honeybees actively regulate their brood temperature by heating between 33 and 36 degrees C if ambient temperatures are lower. Heat is generated by vibrating the flight muscles. Heating rapidly depletes the worker's internal energy; therefore heating performance is limited by the honey that is ingested before the heating process. Stored honey is the predefined fuel for flying and heating, but it is stored at a distance from the broodcomb, causing a potential logistic problem of efficient energy supply in the brood area. Our study focused on the behaviour and the thoracic temperature of the participants in trophallactic food exchanges on the broodcomb. We found that 85.5% of the recipients in a trophallactic food exchange have a higher thoracic temperature during feeding contacts than donors and after the feeding contact the former engage in brood heating more often. The donor bees have lower thoracic temperature and shuttle constantly between honey stores and the broodcomb where they transfer the stored honey to heating bees. Providing heat-emitting workers with small doses of high performance fuel contributes to an economic distribution of resources consistent with physiological conditions of the bees and the ecological requirements of the hive. The trophallaxis-based system is essential to provide the energy-intensive brood warming activity. The emerging independence from ambient temperatures is not only beneficial for brood rearing during times of sudden cold spells, but also enables the honeybees in temperate regions to raise brood in early spring and might be the decisive factor for the occurrence of honeybees in temperate climates in general.


Assuntos
Abelhas/fisiologia , Regulação da Temperatura Corporal/fisiologia , Temperatura Alta , Comportamento de Nidação/fisiologia , Comportamento Social , Animais , Temperatura Corporal/fisiologia , Comportamento Alimentar/fisiologia , Mel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA