RESUMO
Biallelic loss-of-function variants in SMPD4 cause a rare and severe neurodevelopmental disorder with progressive congenital microcephaly and early death. SMPD4 encodes a sphingomyelinase that hydrolyses sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope and interacts with nuclear pore complexes (NPC). We refine the clinical phenotype of loss-of-function SMPD4 variants by describing five individuals from three unrelated families with longitudinal data due to prolonged survival. All individuals surviving beyond infancy developed insulin-dependent diabetes, besides presenting with a severe neurodevelopmental disorder and microcephaly, making diabetes one of the most frequent age-dependent non-cerebral abnormalities. We studied the function of SMPD4 at the cellular and organ levels. Knock-down of SMPD4 in human neural stem cells causes reduced proliferation rates and prolonged mitosis. Moreover, SMPD4 depletion results in abnormal nuclear envelope breakdown and reassembly during mitosis and decreased post-mitotic NPC insertion. Fibroblasts from affected individuals show deficient SMPD4-specific neutral sphingomyelinase activity, without changing (sub)cellular lipidome fractions, which suggests a local function of SMPD4 on the nuclear envelope. In embryonic mouse brain, knockdown of Smpd4 impairs cortical progenitor proliferation and induces premature differentiation by altering the balance between neurogenic and proliferative progenitor cell divisions. We hypothesize that, in individuals with SMPD4-related disease, nuclear envelope bending, which is needed to insert NPCs in the nuclear envelope, is impaired in the absence of SMPD4 and interferes with cerebral corticogenesis and survival of pancreatic beta cells.
Assuntos
Diabetes Mellitus , Microcefalia , Humanos , Animais , Camundongos , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Esfingomielina Fosfodiesterase/análise , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Poro Nuclear/metabolismo , Mitose , Diabetes Mellitus/metabolismoRESUMO
BACKGROUND: Protein disulfide isomerase (PDI) proteins are part of the thioredoxin protein superfamily. PDIs are involved in the formation and rearrangement of disulfide bonds between cysteine residues during protein folding in the endoplasmic reticulum and are implicated in stress response pathways. METHODS: Eight children from four consanguineous families residing in distinct geographies within the Middle East and Central Asia were recruited for study. All probands showed structurally similar microcephaly with lissencephaly (microlissencephaly) brain malformations. DNA samples from each family underwent whole exome sequencing, assessment for repeat expansions and confirmatory segregation analysis. RESULTS: An identical homozygous variant in TMX2 (c.500G>A), encoding thioredoxin-related transmembrane protein 2, segregated with disease in all four families. This variant changed the last coding base of exon 6, and impacted mRNA stability. All patients presented with microlissencephaly, global developmental delay, intellectual disability and epilepsy. While TMX2 is an activator of cellular C9ORF72 repeat expansion toxicity, patients showed no evidence of C9ORF72 repeat expansions. CONCLUSION: The TMX2 c.500G>A allele associates with recessive microlissencephaly, and patients show no evidence of C9ORF72 expansions. TMX2 is the first PDI implicated in a recessive disease, suggesting a protein isomerisation defect in microlissencephaly.
Assuntos
Predisposição Genética para Doença , Proteínas de Membrana/genética , Microcefalia/genética , Isomerases de Dissulfetos de Proteínas/genética , Tiorredoxinas/genética , Sequência de Aminoácidos/genética , Criança , Pré-Escolar , Consanguinidade , Retículo Endoplasmático/genética , Éxons/genética , Feminino , Homozigoto , Humanos , Masculino , Proteínas de Membrana/ultraestrutura , Microcefalia/patologia , Mutação/genética , Dobramento de Proteína , Tiorredoxinas/ultraestrutura , Sequenciamento do ExomaRESUMO
SH3 and cysteine-rich domain-containing protein 3 (STAC3) is an essential component of the skeletal muscle excitation-contraction coupling (ECC) machinery, though its role and function are not yet completely understood. Here, we report 18 patients carrying a homozygous p.(Trp284Ser) STAC3 variant in addition to a patient compound heterozygous for the p.(Trp284Ser) and a novel splice site change (c.997-1G > T). Clinical severity ranged from prenatal onset with severe features at birth, to a milder and slowly progressive congenital myopathy phenotype. A malignant hyperthermia (MH)-like reaction had occurred in several patients. The functional analysis demonstrated impaired ECC. In particular, KCl-induced membrane depolarization resulted in significantly reduced sarcoplasmic reticulum Ca2+ release. Co-immunoprecipitation of STAC3 with CaV 1.1 in patients and control muscle samples showed that the protein interaction between STAC3 and CaV 1.1 was not significantly affected by the STAC3 variants. This study demonstrates that STAC3 gene analysis should be included in the diagnostic work up of patients of any ethnicity presenting with congenital myopathy, in particular if a history of MH-like episodes is reported. While the precise pathomechanism remains to be elucidated, our functional characterization of STAC3 variants revealed that defective ECC is not a result of CaV 1.1 sarcolemma mislocalization or impaired STAC3-CaV 1.1 interaction.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Hipertermia Maligna/genética , Miotonia Congênita/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Adolescente , Cálcio/metabolismo , Criança , Pré-Escolar , Acoplamento Excitação-Contração , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Masculino , Hipertermia Maligna/etiologia , Hipertermia Maligna/metabolismo , Miotonia Congênita/complicações , Miotonia Congênita/metabolismo , Linhagem , Fenótipo , Ligação Proteica , Transporte Proteico , Retículo Sarcoplasmático/metabolismo , Índice de Gravidade de Doença , Sequenciamento do Exoma , Adulto JovemRESUMO
INTRODUCTION: GNE myopathy is a rare recessive myopathy caused by mutations in the GNE gene. It is mainly a distal myopathy with relative sparing of the quadriceps muscle. METHODS: Patients with distal myopathies from Kuwait were examined and tested for the Middle Eastern GNE gene founder mutation, p.M743T. Patients were further studied for disease-associated features. RESULTS: GNE myopathy was confirmed in 14 of the 37 patients (37.8%) screened. All cases were caused by the p.M743T mutation. Age of onset and time from disease onset to loss of ambulation were variable. Both wasted and hypertrophied calf muscles were noted. Severely affected quadriceps were present in 1 patient, and ptosis, ophthalmoplegia, and tongue wasting in another. DISCUSSION: The scope of the p.M743T mutation now includes the Arabian Peninsula. Variations in age of onset, disease progression, and distribution in patients harboring the same mutation suggest the role of other genetic- and environment-modifying factors. Muscle Nerve 58: 700-707, 2018.
Assuntos
Complexos Multienzimáticos/genética , Doenças Musculares/epidemiologia , Doenças Musculares/genética , Mutação/genética , Adulto , Creatina Quinase/sangue , Saúde da Família , Feminino , Humanos , Kuweit/epidemiologia , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/diagnóstico por imagem , Doenças Musculares/sangue , Doenças Musculares/diagnóstico por imagem , Cadeias Pesadas de Miosina/metabolismo , NAD/metabolismo , Fibras Nervosas/metabolismo , Estudos Retrospectivos , Adulto JovemRESUMO
The corpus callosum is the principal cerebral commissure connecting the right and left hemispheres. The development of the corpus callosum is under tight genetic control, as demonstrated by abnormalities in its development in more than 1,000 genetic syndromes. We recruited more than 25 families in which members affected with corpus callosum hypoplasia (CCH) lacked syndromic features and had consanguineous parents, suggesting recessive causes. Exome sequence analysis identified C12orf57 mutations at the initiator methionine codon in four different families. C12orf57 is ubiquitously expressed and encodes a poorly annotated 126 amino acid protein of unknown function. This protein is without significant paralogs but has been tightly conserved across evolution. Our data suggest that this conserved gene is required for development of the human corpus callosum.
Assuntos
Agenesia do Corpo Caloso/genética , Corpo Caloso/metabolismo , Exoma , Mutação , Sequência de Aminoácidos , Córtex Cerebral/metabolismo , Códon/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Metionina/genética , Dados de Sequência Molecular , Análise de Sequência de DNA/métodosRESUMO
Microcephaly-capillary malformation syndrome (MIC-CAP syndrome) is a newly recognized autosomal recessive congenital neurocutaneous central nervous system disorder characterized by severe microcephaly, early-onset seizures, profound psychomotor disability, and multiple cutaneous capillary lesions. In addition, affected patients have variable dysmorphic facial features and hypoplastic distal phalanges. It is distinctively caused by mutations in a newly characterized gene, STAMBP, encoding the deubiquitinating (DUB) isopeptidase that has a key role in cell surface receptor-mediated endocytosis and sorting. Herein, we describe an Arab family of two siblings with classic features of MIC-CAP syndrome that harbor a novel predicted splice mutation in STAMBP, which additionally display previously unreported findings of congenital hypothyroidism and alopecia areata.
Assuntos
Anormalidades Múltiplas/diagnóstico , Capilares/anormalidades , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Microcefalia/diagnóstico , Ubiquitina Tiolesterase/genética , Malformações Vasculares/diagnóstico , Anormalidades Múltiplas/genética , Árabes , Criança , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , Masculino , Microcefalia/genética , Mutação Puntual , SíndromeRESUMO
Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies.
Assuntos
Gangliosidoses GM2/genética , Mutação/genética , N-Acetilgalactosaminiltransferases/genética , Amish , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Análise Mutacional de DNA , Saúde da Família , Feminino , Fibroblastos/metabolismo , Gangliosídeos/biossíntese , Gangliosidoses GM2/patologia , Humanos , Itália , Masculino , Fenótipo , Pele/patologiaRESUMO
Spinal muscular atrophy is a neuromuscular genetic condition associated with progressive muscle weakness and atrophy. Nusinersen is an antisense oligonucleotide therapy approved for the treatment of 5q spinal muscular atrophy in pediatric and adult patients. The objective of this clinical case series is to describe the efficacy and safety of nusinersen in treating spinal muscular atrophy in 20 pediatric and 18 adult patients across six treatment centers in Kuwait. Functional motor assessments (Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders, Hammersmith Functional Motor Scale Expanded, and Revised Upper Limb Module) were used to assess changes in motor function following nusinersen treatment. The safety assessment involved clinical monitoring of adverse events. The results demonstrate clinically meaningful or considerable improvement in motor performance for nearly all patients, lasting over 4 years in some cases. A total of 70% of patients in the pediatric cohort and 72% of patients in the adult cohort achieved a clinically meaningful improvement in motor function following nusinersen treatment. Additionally, nusinersen was well-tolerated in both cohorts. These findings add to the growing body of evidence relating to the clinical efficacy and safety of nusinersen.
RESUMO
Background: Autosomal recessive polycystic kidney disease (ARPKD), a rare genetic disorder characterized by kidney cysts, shows complex clinical and genetic heterogeneity. This study aimed to explore the genetic landscape of ARPKD in Kuwait and examine the intricate relationship between its genes and clinical presentation to enhance our understanding and contribute towards more efficient management strategies for ARPKD. Methods: This study recruited 60 individuals with suspected ARPKD from 44 different families in Kuwait. The participants were of different ethnicities and aged 0-70 years. Additionally, 33 were male, 15 were female, and 12 had indeterminant sex due to congenital anomalies. Comprehensive clinical data were collected. Mutations were identified by next-generation whole exome sequencing and confirmed using Sanger sequencing. Results: Of the 60 suspected ARPKD cases, 20 (33.3 %) died within hours of birth or by the end of the first month of life and one (1.7 %) within 12 months of birth. The remaining 39 (65.0 %) cases were alive, at the time of the study, and exhibited diverse clinical features related to ARPKD, including systematic hypertension (5.0 %), pulmonary hypoplasia (11.7 %), dysmorphic features (40.0 %), cardiac problems (8.3 %), cystic liver (5.0 %), Potter syndrome (13.3 %), developmental delay (8.3 %), and enlarged cystic kidneys (100 %). Twelve mutations, including novel truncating mutations, were identified in 31/60 cases (51.7 %) from 17/44 families (38.6 %). Additionally, 8/12 (66.7 %) mutations were in the PKHD1 gene, with the remaining four in different genes: NPHP3, VPS13P, CC2D2A, and ZNF423. Conclusions: This study highlights the spectrum of clinical features and genetic mutations of patients with ARPKD in Kuwait. It highlights the necessity for personalized approaches to improve ARPKD diagnosis and treatment, offering crucial insights into managing ARPKD.
RESUMO
BACKGROUND: Biotin-thiamine-responsive basal ganglia disease (BTBGD) is a rare autosomal recessive neurometabolic disorder that is caused by biallelic pathogenic SLC19A3 variants and is characterized by subacute encephalopathy associated with confusion, convulsions, dysphagia, dysarthria, or other neurological manifestations. METHODS: A retrospective review of the data registry in Kuwait Medical Genetics Center for all cases diagnosed clinically and radiographically and confirmed genetically with BTBGD. RESULTS: Twenty one cases from 13 different families were diagnosed with BTBGD in Kuwait. Most cases (86%) presented with confusion, dystonia, convulsions, or dysarthria, while three individuals were diagnosed pre-symptomatically during familial targeted genetic screening. Symptoms resolved completely within 2-week of treatment in two-thirds of the symptomatic cases but progressed in six of them to a variety of severe symptoms including severe cogwheel rigidity, dystonia and quadriparesis due to delayed presentation and management. Neuroradiological findings of the symptomatic cases revealed bilateral central changes in the basal ganglia. Two novel homozygous missense SLC19A3 variants were detected in a Kuwaiti and a Jordanian individuals, in addition to the previously reported Saudi founder homozygous variant, c.1264A > G; p.(Thr422Ala) in the remaining cases. Age of diagnosis ranged from newborn to 32 years, with a median age of 2-3 years. All cases are still alive receiving high doses of biotin and thiamine. CONCLUSION: This is the first study reporting the phenotypic and genotypic spectrum of 21 individuals with BTBGD in Kuwait and describing two novel SLC19A3 variants. BTBGD is a treatable neurometabolic disease that requires early recognition and treatment initiation. This study highlights the importance of performing targeted molecular testing of the founder variant in patients presenting with acute encephalopathy in the region.
Assuntos
Doenças dos Gânglios da Base , Encefalopatias , Distonia , Recém-Nascido , Humanos , Pré-Escolar , Adulto , Biotina , Kuweit , Disartria , Estudos Retrospectivos , Convulsões , Proteínas de Membrana TransportadorasRESUMO
BACKGROUND: Very long-chain fatty acids (VLCFAs) composed of more than 20 carbon atoms are essential in the biosynthesis of cell membranes in the brain, skin, and retina. VLCFAs are elongated beyond 28 carbon atoms by ELOVL4 enzyme. Variants in ELOVL4 are associated with three Mendelian disorders: autosomal dominant (AD) Stargardt-like macular dystrophy type 3, AD spinocerebellar ataxia, and autosomal recessive disorder congenital ichthyosis, spastic quadriplegia and impaired intellectual development (ISQMR). Only seven subjects from five unrelated families with ISQMR have been described, all of which have biallelic single-nucleotide variants. METHODS: We performed clinical exome sequencing on probands from four unrelated families with neuro-ichthyosis. RESULTS: We identified three novel homozygous ELOVL4 variants. Two of the families originated from the same Saudi tribe and had the exact homozygous exonic deletion in ELOVL4, while the third and fourth probands had two different novel homozygous missense variants. Seven out of the eight affected subjects had profound developmental delay, epilepsy, axial hypotonia, peripheral hypertonia, and ichthyosis. Delayed myelination and corpus callosum hypoplasia were seen in two of five subjects with brain magnetic rosonance imaging and cerebral atrophy in three. CONCLUSION: Our study expands the allelic spectrum of ELOVL4-related ISQMR. The detection of the same exonic deletion in two unrelated Saudi family from same tribe suggests a tribal founder mutation.
Assuntos
Ictiose Lamelar , Ictiose , Degeneração Macular , Humanos , Mutação , Degeneração Macular/genética , Retina/metabolismo , Ictiose/genética , Carbono , Proteínas do Olho/genética , Proteínas de Membrana/genéticaRESUMO
BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder which leads to progressive muscle degeneration and weakness. Most patients die from cardiac or respiratory failure. Gene transfer therapy offers a promising approach to treating this disorder. OBJECTIVE: Given the genetic disease burden, family size, and the high consanguinity rates in the Middle East, our objective is to address current practices and challenges of DMD patient care within two countries in this region, namely the United Arab Emirates and Kuwait, and to outline readiness for gene therapy. METHODS: An expert panel meeting was held to discuss the DMD patient journey, disease awareness, current management of DMD, challenges faced and recommendations for improvement. Opportunities and challenges for gene therapy in both countries were also deliberated. A pre-meeting survey was conducted, and the results were used to guide the discussion during the meeting. RESULTS: DMD awareness is poor resulting in a delay in referral and diagnosis of patients. Awareness and education initiatives, along with an interconnected referral system could improve early diagnosis. Genetic testing is available in both countries although coverage varies. Corticosteroid therapy is the standard of care however there is often a delay in treatment initiation. Patients with DMD should be diagnosed and managed by a multi-disciplinary team in centers of excellence for neuromuscular disorders. Key success factors to support the introduction of gene therapy include education and training, timely and accessible genetic testing and resolution of reimbursement and cost issues. CONCLUSION: There are many challenges facing the management of DMD patients in the United Arab Emirates and Kuwait and most likely other countries within the Middle East. Successful introduction of gene therapy to treat DMD will require careful planning, education, capacity building and prioritization of core initiatives.
Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/diagnóstico , Testes Genéticos , Oriente Médio , Terapia Genética/métodosRESUMO
Heterozygous missense variants in the WD repeat domain 11 (WDR11) gene are associated with hypogonadotropic hypogonadism in humans. In contrast, knockout of both alleles of Wdr11 in mice results in a more severe phenotype with growth and developmental delay, features of holoprosencephaly, heart defects and reproductive disorders. Similar developmental defects known to be associated with aberrant hedgehog signaling and ciliogenesis have been found in zebrafish after Wdr11 knockdown. We here report biallelic loss-of-function variants in the WDR11 gene in six patients from three independent families with intellectual disability, microcephaly and short stature. The findings suggest that biallelic WDR11 variants in humans result in an overlapping but milder phenotype compared to Wdr11-deficient animals. However, the observed human phenotype differs significantly from dominantly inherited variants leading to hypogonadotropic hypogonadism, suggesting that recessive WDR11 variants result in a clinically distinct entity.
Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Mutação com Perda de Função , Proteínas de Membrana/genética , Microcefalia/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética , Adulto , Criança , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Mutação de Sentido Incorreto , LinhagemRESUMO
Kuwait is a small Arabian Gulf country with a high rate of consanguinity and where a national newborn screening program was expanded in October 2014 to include a wide range of endocrine and metabolic disorders. A retrospective study conducted between January 2015 and December 2020 revealed a total of 304,086 newborns have been screened in Kuwait. Six newborns were diagnosed with classic homocystinuria with an incidence of 1:50,000, which is not as high as in Qatar but higher than the global incidence. Molecular testing for five of them has revealed three previously reported pathogenic variants in the CBS gene, c.969G>A, p.(Trp323Ter); c.982G>A, p.(Asp328Asn); and the Qatari founder variant c.1006C>T, p.(Arg336Cys). This is the first study to review the screening of newborns in Kuwait for classic homocystinuria, starting with the detection of elevated blood methionine and providing a follow-up strategy for positive results, including plasma total homocysteine and amino acid analyses. Further, we have demonstrated an increase in the specificity of the current newborn screening test for classic homocystinuria by including the methionine to phenylalanine ratio along with the elevated methionine blood levels in first-tier testing. Here, we provide evidence that the newborn screening in Kuwait has led to the early detection of classic homocystinuria cases and enabled the affected individuals to lead active and productive lives.
RESUMO
Congenital myopathies represent a quite heterogeneous group of neuromuscular disorders both at the clinical and genetic level. High-throughput sequencing (NGS), targeted or not, combined with muscle pathology, greatly facilitate their accurate characterization and occasionally lead to unexpected discoveries like in the case reported here in a Kuwaiti family facing a long diagnostic odyssey.
TITLE: Quand tous les chemins mènent à l'Afrique . ABSTRACT: Les myopathies congénitales constituent un ensemble hétérogène de maladies neuromusculaires aussi bien sur le plan clinique que génétique. Le séquençage à haut débit, ciblé ou non, couplé à l'analyse de la biopsie musculaire, facilite grandement leur caractérisation précise et conduisent parfois à des découvertes inattendues comme dans le cas rapporté ci-dessous d'une famille koweitienne en errance diagnostique depuis de nombreuses années.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fissura Palatina/diagnóstico , Hipertermia Maligna/diagnóstico , Mutação de Sentido Incorreto , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Adolescente , África , Substituição de Aminoácidos , População Negra/genética , Criança , Fissura Palatina/genética , Análise Mutacional de DNA , Diagnóstico Diferencial , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Kuweit , Masculino , Hipertermia Maligna/genética , Miotonia Congênita/patologia , Fenótipo , Catar , Arábia Saudita , IrmãosRESUMO
Aim: Duchenne muscular dystrophy (DMD) is a severe and rare X-linked neuromuscular childhood disorder that results in functional decline, loss of ambulation and early death due to cardiac or respiratory failure. The objective of this paper is to address different aspects of the current management of DMD in the Middle East, north Africa (MENA) region, and to gather experts' recommendations on how to optimally diagnose and treat patients suffering from this disease. Methods: A group of experts (neuromuscular medicine, neuropediatricians and geneticists) convened to discuss the diagnosis and management of DMD in the MENA region. A list of practical statements was prepared by the chair of the meeting to guide the discussions around critical aspects relating to the current and future management of DMD. Results & conclusion: Ideally, DMD management should be a multidisciplinary approach. Nevertheless, few tertiary care hospitals in the region are currently able to provide the full spectrum of medical expertise and services needed by DMD patients. Clinical practice in the region remains heterogeneous. Specific guidelines for diagnosis and treatment are needed in the MENA region to improve outcomes. Disease awareness among the general public and the medical community is lacking. Now that mutation-specific therapies are being developed and more widely studied, general education programs regarding early signs and symptoms, a standardized referral and diagnosis pathway, patient registries and support groups will significantly improve the management of the disease.
Assuntos
Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/terapia , Humanos , Oriente MédioRESUMO
Duchenne and Becker muscular dystrophies (DMD/BMD) are X-linked recessive neuromuscular disorders characterized by progressive irreversible muscle weakness and atrophy that affect both skeletal and cardiac muscles. DMD/BMD is caused by mutations in the Dystrophin gene on the X chromosome, leading to the absence of the essential muscle protein Dystrophin in DMD. In BMD, Dystrophin is partially functioning with a shorter protein product. Recent advances in molecular therapies for DMD require precise genetic diagnoses because most therapeutic strategies are mutation-specific. Hence, early diagnosis is crucial to allow appropriate planning for patient care and treatment. In this study, data from DMD/BMD patients who attended the Kuwait Medical Genetic Center during the last 20 years was retrieved from a Kuwait neuromuscular registry and analyzed. We combined multiplex PCR and multiplex ligation-dependent probe amplification (MLPA) with Sanger sequencing to detect Dystrophin gene mutations. A total of 35 different large rearrangements, 2 deletion-insertions (Indels) and 4 substitution mutations were identified in the 68 unrelated families. The deletion and duplication rates were 66.2% and 4.4%, respectively. The analyzed data from our registry revealed that 11 (16%) of the DMD families will benefit from newly introduced therapies (Ataluren and exon 51 skipping). At the time of submitting this paper, two cases have already enrolled in Ataluren (Tranlsarna™) therapy, and one case has been enrolled in exon 51 skipping therapy.
Assuntos
Distrofina/genética , Mutação INDEL , Distrofia Muscular de Duchenne/genética , Mutação de Sentido Incorreto , Deleção de Sequência , Adolescente , Adulto , Criança , Análise Mutacional de DNA , Éxons , Família , Feminino , Expressão Gênica , Terapia Genética/métodos , Humanos , Kuweit , Masculino , Reação em Cadeia da Polimerase Multiplex , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia , Oxidiazóis/uso terapêutico , Medicina de PrecisãoRESUMO
Pediatric-onset ataxias often present clinically as developmental delay and intellectual disability, with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a new clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia, coarsened facial features and intellectual disability, due to truncating mutations in the sorting nexin gene SNX14, encoding a ubiquitously expressed modular PX domain-containing sorting factor. We found SNX14 localized to lysosomes and associated with phosphatidylinositol (3,5)-bisphosphate, a key component of late endosomes/lysosomes. Patient-derived cells showed engorged lysosomes and a slower autophagosome clearance rate upon autophagy induction by starvation. Zebrafish morphants for snx14 showed dramatic loss of cerebellar parenchyma, accumulation of autophagosomes and activation of apoptosis. Our results characterize a unique ataxia syndrome due to biallelic SNX14 mutations leading to lysosome-autophagosome dysfunction.
Assuntos
Doenças Cerebelares/genética , Cerebelo/patologia , Lisossomos/metabolismo , Fagossomos/metabolismo , Nexinas de Classificação/genética , Ataxias Espinocerebelares/genética , Animais , Atrofia/genética , Autofagia , Pré-Escolar , Feminino , Frequência do Gene , Humanos , Lactente , Escore Lod , Doenças por Armazenamento dos Lisossomos/genética , Masculino , Mutação , Síndrome , Peixe-ZebraRESUMO
BACKGROUND: Myotonic dystrophy is caused by unstable (CTG)(n) repeat expansion. On normal chromosomes, this repeat is highly polymorphic, with a copy number ranging from 4 to 38. Myotonic dystrophy is considered more prevalent in Western European and Japanese populations but less prevalent, rare, or even absent in others. It has been proposed that the expanded (CTG)(n) alleles originated from the group of the large normal alleles. OBJECTIVE: To determine whether there is a lower prevalence of the large alleles in the Kuwaiti population. DESIGN AND PARTICIPANTS: We determined the size distribution of the CTG repeats by means of polymerase chain reaction in blood DNA derived from 185 healthy Kuwaiti individuals representing the 5 Kuwaiti provinces. RESULTS: We found a total of 17 (CTG)(n) alleles, with a range of 5 to 37 repeats. The (CTG)(5) allele was the most frequent single allele (100/370 [27.0%]), whereas the (CTG)(10-13) was the most frequent class of alleles (161/370 [43.5%]). Using 18 repeats as the cutoff point, chi(2) analysis showed a statistically significant lower frequency of greater than 18 alleles in the Kuwaiti population compared with the European population (chi(2) = 12.7; P<.001). CONCLUSIONS: These data may explain the rare occurrence of myotonic dystrophy in the Kuwaiti population. Further study of healthy families within the high-normal repeat range is in progress to investigate the possible instability of the (CTG)(>18) alleles in our area.
Assuntos
Distrofia Miotônica/genética , Locos de Características Quantitativas/genética , Expansão das Repetições de Trinucleotídeos/genética , Distribuição de Qui-Quadrado , Frequência do Gene/genética , Humanos , KuweitRESUMO
Despite significant heritability of autism spectrum disorders (ASDs), their extreme genetic heterogeneity has proven challenging for gene discovery. Studies of primarily simplex families have implicated de novo copy number changes and point mutations, but are not optimally designed to identify inherited risk alleles. We apply whole-exome sequencing (WES) to ASD families enriched for inherited causes due to consanguinity and find familial ASD associated with biallelic mutations in disease genes (AMT, PEX7, SYNE1, VPS13B, PAH, and POMGNT1). At least some of these genes show biallelic mutations in nonconsanguineous families as well. These mutations are often only partially disabling or present atypically, with patients lacking diagnostic features of the Mendelian disorders with which these genes are classically associated. Our study shows the utility of WES for identifying specific genetic conditions not clinically suspected and the importance of partial loss of gene function in ASDs.