Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 22(6): 703-709, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36879002

RESUMO

The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but the superconductivity at high doping is often believed to be governed by conventional mean-field Bardeen-Cooper-Schrieffer theory1. However, it was shown that the superfluid density vanishes when the transition temperature goes to zero2,3, in contradiction to expectations from Bardeen-Cooper-Schrieffer theory. Our scanning tunnelling spectroscopy measurements in the overdoped regime of the (Pb,Bi)2Sr2CuO6+δ high-temperature superconductor show that this is due to the emergence of nanoscale superconducting puddles in a metallic matrix4,5. Our measurements further reveal that this puddling is driven by gap filling instead of gap closing. The important implication is that it is not a diminishing pairing interaction that causes the breakdown of superconductivity. Unexpectedly, the measured gap-to-filling correlation also reveals that pair breaking by disorder does not play a dominant role and that the mechanism of superconductivity in overdoped cuprate superconductors is qualitatively different from conventional mean-field theory.

2.
Phys Rev Lett ; 132(7): 076001, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427861

RESUMO

The shot noise in tunneling experiments reflects the Poissonian nature of the tunneling process. The shot-noise power is proportional to both the magnitude of the current and the effective charge of the carrier. Shot-noise spectroscopy thus enables us, in principle, to determine the effective charge q of the charge carriers of that tunnel. This can be used to detect electron pairing in superconductors: In the normal state, the noise corresponds to single electron tunneling (q=1e), while in the paired state, the noise corresponds to q=2e. Here, we use a newly developed amplifier to reveal that in typical mesoscopic superconducting junctions, the shot noise does not reflect the signatures of pairing and instead stays at a level corresponding to q=1e. We show that transparency can control the shot noise, and this q=1e is due to the large number of tunneling channels with each having very low transparency. Our results indicate that in typical mesoscopic superconducting junctions, one should expect q=1e noise and lead to design guidelines for junctions that allow the detection of electron pairing.

3.
Nanotechnology ; 30(33): 335702, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31022709

RESUMO

We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defined electrical circuits. We describe a new fabrication method to create a defined apex on a silicon chip and experimentally demonstrate the high performance of the smart tips, both in stability and resolution. In situ tip preparation methods are possible and we verify that they can resolve the herringbone reconstruction and Friedel oscillations on Au(111) surfaces. We further present an overview of possible applications.

4.
Nat Commun ; 14(1): 3341, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37286552

RESUMO

Majorana bound states are putative collective excitations in solids that exhibit the self-conjugate property of Majorana fermions-they are their own antiparticles. In iron-based superconductors, zero-energy states in vortices have been reported as potential Majorana bound states, but the evidence remains controversial. Here, we use scanning tunneling noise spectroscopy to study the tunneling process into vortex bound states in the conventional superconductor NbSe2, and in the putative Majorana platform FeTe0.55Se0.45. We find that tunneling into vortex bound states in both cases exhibits charge transfer of a single electron charge. Our data for the zero-energy bound states in FeTe0.55Se0.45 exclude the possibility of Yu-Shiba-Rusinov states and are consistent with both Majorana bound states and trivial vortex bound states. Our results open an avenue for investigating the exotic states in vortex cores and for future Majorana devices, although further theoretical investigations involving charge dynamics and superconducting tips are necessary.

5.
Nat Commun ; 12(1): 298, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436594

RESUMO

By using scanning tunneling microscopy (STM) we find and characterize dispersive, energy-symmetric in-gap states in the iron-based superconductor FeTe0.55Se0.45, a material that exhibits signatures of topological superconductivity, and Majorana bound states at vortex cores or at impurity locations. We use a superconducting STM tip for enhanced energy resolution, which enables us to show that impurity states can be tuned through the Fermi level with varying tip-sample distance. We find that the impurity state is of the Yu-Shiba-Rusinov (YSR) type, and argue that the energy shift is caused by the low superfluid density in FeTe0.55Se0.45, which allows the electric field of the tip to slightly penetrate the sample. We model the newly introduced tip-gating scenario within the single-impurity Anderson model and find good agreement to the experimental data.

6.
Science ; 374(6567): 608-611, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34709897

RESUMO

The idea that preformed Cooper pairs could exist in a superconductor at temperatures higher than its zero-resistance critical temperature (Tc) has been explored for unconventional, interfacial, and disordered superconductors, but direct experimental evidence is lacking. We used scanning tunneling noise spectroscopy to show that preformed Cooper pairs exist up to temperatures much higher than Tc in the disordered superconductor titanium nitride by observing an enhancement in the shot noise that is equivalent to a change of the effective charge from one to two electron charges. We further show that the spectroscopic gap fills up rather than closes with increasing temperature. Our results demonstrate the existence of a state above Tc that, much like an ordinary metal, has no (pseudo)gap but carries charge through paired electrons.

7.
Rev Sci Instrum ; 89(12): 123705, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30599565

RESUMO

Spectroscopic-imaging scanning tunneling microscopy is a powerful technique to study quantum materials, with the ability to provide information about the local electronic structure with subatomic resolution. However, as most spectroscopic measurements are conducted without feedback to the tip, it is extremely sensitive to vibrations coming from the environment. This requires the use of laboratories with low-vibration facilities combined with a very rigid microscope construction. In this article, we report on the design and fabrication of an ultra-stable scanning tunneling microscope (STM) for spectroscopic-imaging measurements that operates in ultra-high vacuum and at low temperatures (4 K). We start from existing designs with sapphire as the main material and improve the stiffness further by performing finite element analysis calculations for the main components of the microscope to guide design choices on the geometry of the parts. With this strategy, we construct a STM head with measured lowest resonant frequencies above f 0 = 13 kHz for the coarse approach mechanism, a value three times higher than what has been previously reported and in good agreement with the calculations. This allows us to achieve an average vibration level of ∼6 fm / H z , without a dedicated low-vibration lab. We demonstrate the microscope's performance with topographic and spectroscopic measurements on the correlated metal Sr2RhO4, showing the quasiparticle interference pattern in real and reciprocal space with high signal-to-noise ratio.

8.
Beilstein J Nanotechnol ; 8: 2389-2395, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29234574

RESUMO

Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA