Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Immunity ; 57(6): 1324-1344.e8, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38776918

RESUMO

Peripheral CD8+ T cell tolerance is a checkpoint in both autoimmune disease and anti-cancer immunity. Despite its importance, the relationship between tolerance-induced states and other CD8+ T cell differentiation states remains unclear. Using flow cytometric phenotyping, single-cell RNA sequencing (scRNA-seq), and chromatin accessibility profiling, we demonstrated that in vivo peripheral tolerance to a self-antigen triggered a fundamentally distinct differentiation state separate from exhaustion, memory, and functional effector cells but analogous to cells defectively primed against tumors. Tolerant cells diverged early and progressively from effector cells, adopting a transcriptionally and epigenetically distinct state within 60 h of antigen encounter. Breaching tolerance required the synergistic actions of strong T cell receptor (TCR) signaling and inflammation, which cooperatively induced gene modules that enhanced protein translation. Weak TCR signaling during bystander infection failed to breach tolerance due to the uncoupling of effector gene expression from protein translation. Thus, tolerance engages a distinct differentiation trajectory enforced by protein translation defects.


Assuntos
Linfócitos T CD8-Positivos , Diferenciação Celular , Tolerância Imunológica , Biossíntese de Proteínas , Receptores de Antígenos de Linfócitos T , Linfócitos T CD8-Positivos/imunologia , Animais , Diferenciação Celular/imunologia , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Tolerância Imunológica/imunologia , Biossíntese de Proteínas/imunologia , Transdução de Sinais/imunologia , Camundongos Endogâmicos C57BL , Autoantígenos/imunologia
2.
Nano Lett ; 22(6): 2506-2513, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35266392

RESUMO

First evidence of geometrical patterns and defined distances of biomolecules as fundamental parameters to regulate receptor binding and cell signaling have emerged recently. Here, we demonstrate the importance of controlled nanospacing of immunostimulatory agents for the activation of immune cells by exploiting DNA-based nanomaterials and pre-existing crystallography data. We created DNA origami nanoparticles that present CpG-motifs in rationally designed spatial patterns to activate Toll-like Receptor 9 in RAW 264.7 macrophages. We demonstrated that stronger immune activation is achieved when active molecules are positioned at the distance of 7 nm, matching the active dimer structure of the receptor. Moreover, we show how the introduction of linkers between particle and ligand can influence the spatial tolerance of binding. These findings are fundamental for a fine-tuned manipulation of the immune system, considering the importance of spatially controlled presentation of therapeutics to increase efficacy and specificity of immune-modulating nanomaterials where multivalent binding is involved.


Assuntos
Nanoestruturas , Receptor Toll-Like 9 , DNA/química , Ligantes , Ligação Proteica , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
3.
Angew Chem Int Ed Engl ; 62(11): e202218334, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36645693

RESUMO

The elegant geometry of viruses has inspired bio-engineers to synthetically explore the self-assembly of polyhedral capsids employed to protect new cargo or change an enzymatic microenvironment. Recently, Yang and co-workers used DNA nanotechnology to revisit the icosahedral capsid structure of the phiX174 bacteriophage and reloaded the original viral genome as cargo into their fully synthetic architecture. Surprisingly, when using a favorable combination of structural rigidity and dynamic multivalent cargo entrapment, the synthetic particles were able to infect non-competent bacterial cells and produce the original phiX174 bacteriophage. This work presents an exciting new direction of DNA nanotech for bio-engineering applications which involve bacterial interactions.


Assuntos
Infecções Bacterianas , Nanoestruturas , Humanos , Capsídeo/química , Proteínas do Capsídeo/química , DNA/análise
4.
J Am Chem Soc ; 144(47): 21576-21586, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383954

RESUMO

Super-selective multivalent ligand-receptor interactions display a signature step-like onset in binding when meeting a characteristic density of target receptors. Materials engineered for super-selective binding generally display a high number of flexible ligands to enhance the systems' avidity. In many biological processes, however, ligands are present in moderate copy numbers and arranged in spatio-temporal patterns. In this low-valency regime, the rigidity of the ligand-presenting architecture plays a critical role in the selectivity of the multivalent complex through decrease of the entropic penalty of binding. Exploiting the precision in spatial design inherent to the DNA nanotechnology, we engineered a library of rigid architectures to explore how valency, affinity, and nano-spacing control the presence of super-selectivity in multivalent binding. A micromolar monovalent affinity was required for super-selective binding to be observed within low-valency systems, and the transition point for stable interactions was measured at hexavalent ligand presentation, setting the limits of the low-valency regime. Super-selective binding was observed for all hexavalent architectures, and, more strikingly, the ligand pattern determined the selectivity onset. Hereby, we demonstrate for the first time that nano-control of geometric patterns can be used to discriminate between receptor densities in a super-selective manner. Materials that were indistinguishable in their molecular composition and ligand valency bound with various efficacies on surfaces with constant receptor densities. We define this new phenomenon in super-selective binding as multivalent pattern recognition.


Assuntos
DNA , Nanotecnologia , Ligantes
5.
Biomacromolecules ; 23(6): 2586-2594, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35641881

RESUMO

DNA-based nanomaterials are gaining popularity as uniform and programmable bioengineering tools as a result of recent solutions to their weak stability under biological conditions. The DNA nanotechnology platform uniquely allows decoupling of engineering parameters to comprehensively study the effect of each upon cellular encounter. We here present a systematic analysis of the effect of surface parameters of DNA-based nanoparticles on uptake in three different cell models: tumor cells, macrophages, and dendritic cells. The influence of surface charge, stabilizing coating, fluorophore types, functionalization technique, and particle concentration employed is found to cause significant differences in material uptake among these cell types. We therefore provide new insights into the large variance in cell type-specific uptake, highlighting the necessity of proper engineering and careful assay development when DNA-based materials are used as tools in bioengineering and as future nanotherapeutic agents.


Assuntos
Nanopartículas , Nanoestruturas , Transporte Biológico , DNA , Nanotecnologia
6.
Molecules ; 27(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956918

RESUMO

Targeting cells specifically based on receptor expression levels remains an area of active research to date. Selective binding of receptors cannot be achieved by increasing the individual binding strength, as this does not account for differing distributions of receptor density across healthy and diseased cells. Engaging receptors above a threshold concentration would be desirable in devising selective diagnostics. Integrins are prime target candidates as they are readily available on the cell surface and have been reported to be overexpressed in diseases. Insights into their spatial organization would therefore be advantageous to design selective targeting agents. Here, we investigated the effect of activation method on integrin α5ß1 clustering by immunofluorescence and modeled the global neighbor distances with input from an immuno-staining assay and image processing of microscopy images. This data was used to engineer spatially-controlled DNA-scaffolded bivalent ligands, which we used to compare trends in spatial-selective binding observed across HUVEC, CHO and HeLa in resting versus activated conditions in confocal microscopy images. For HUVEC and CHO, the data demonstrated an improved selectivity and localisation of binding for smaller spacings ~7 nm and ~24 nm, in good agreement with the model. A deviation from the mode predictions for HeLa was observed, indicative of a clustered, instead of homogeneous, integrin organization. Our findings demonstrate how low-technology imaging methods can guide the design of spatially controlled ligands to selectively differentiate between cell type and integrin activation state.


Assuntos
Integrina alfa5beta1 , Nanopartículas , DNA , Integrina alfa5beta1/metabolismo , Integrinas/metabolismo , Ligantes
8.
Nano Lett ; 18(6): 3557-3564, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29756442

RESUMO

Designer nanoparticles with controlled shapes and sizes are increasingly popular vehicles for therapeutic delivery due to their enhanced cell-delivery performance. However, our ability to fashion nanoparticles has offered only limited control over these parameters. Structural DNA nanotechnology has an unparalleled ability to self-assemble three-dimensional nanostructures with near-atomic resolution features, and thus, it offers an attractive platform for the systematic exploration of the parameter space relevant to nanoparticle uptake by living cells. In this study, we examined the cell uptake of a panel of 11 distinct DNA-origami shapes, with the largest dimension ranging from 50-400 nm, in 3 different cell lines. We found that larger particles with a greater compactness were preferentially internalized compared with elongated, high-aspect-ratio particles. Uptake kinetics were also found to be more cell-type-dependent than shape-dependent, with specialized endocytosing dendritic cells failing to saturate over 12 h of study. The knowledge gained in the current study furthers our understanding of how particle shape affects cellular uptake and heralds the development of DNA nanotechnologies toward the improvement of current state-of-the-art cell-delivery vehicles.


Assuntos
DNA/metabolismo , Nanopartículas/metabolismo , Transporte Biológico , Linhagem Celular , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Endocitose , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanopartículas/ultraestrutura , Nanotecnologia
9.
Chem Rev ; 116(4): 2414-77, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26727633

RESUMO

This review discusses one-dimensional supramolecular polymers that form in aqueous media. First, naturally occurring supramolecular polymers are described, in particular, amyloid fibrils, actin filaments, and microtubules. Their structural, thermodynamic, kinetic, and nanomechanical properties are highlighted, as well as their importance for the advancement of biologically inspired supramolecular polymer materials. Second, five classes of synthetic supramolecular polymers are described: systems based on (1) hydrogen-bond motifs, (2) large π-conjugated surfaces, (3) host-guest interactions, (4) peptides, and (5) DNA. We focus on recent studies that address key challenges in the field, providing mechanistic understanding, rational polymer design, important functionality, robustness, or unusual thermodynamic and kinetic properties.


Assuntos
Polímeros/síntese química , Água/química , Cinética , Polímeros/química , Termodinâmica
10.
Chimia (Aarau) ; 71(6): 342-348, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28662736

RESUMO

The extracellular matrix (ECM) and cells have a reciprocal relationship, one shapes the other and vice versa. One of the main challenges of synthetic material systems for developmental cell culturing, organoid and stem cell work includes the implementation of this reciprocal nature. The largest hurdle to achieve true cell-instructive materials in biomaterials engineering is a lack of spatial and temporal control over material properties and the display of bioactive signals compared to the natural cell environment. ECM-mimicking hydrogels have been developed using a wide range of polymers, assembly and cross-linking strategies. While our synthetic toolbox is larger than nature, often our systems underperform when compared to ECM systems with natural components like Matrigel. Material properties and three-dimensional structure ill-represent the three-dimensional ECM reciprocal nature and ligand presentation is an oversimplified version of the complexity found in nature. We hypothesize that the lack of programmable control in properties and ligand presentation forms the basis of this mismatch in performance and analyze the presence of control in current state of the art ECM-mimicking systems based on covalent, supramolecular and recombinant polymers. We conclude that through combining the dynamics of supramolecular materials, robustness from covalent systems and the programmable spatial control of bio-activation in recombinant ECM materials, the optimal synthetic artificial ECM could be assembled.


Assuntos
Materiais Biomiméticos/química , Matriz Extracelular/química , Hidrogéis/química , Polímeros/química , Biomimética , Matriz Extracelular/metabolismo
11.
Small ; 12(17): 2321-33, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26953489

RESUMO

Targeted subunit vaccines for cancer immunotherapy do not capture tumor antigenic complexity, and approaches employing tumor lysate are often limited by inefficient antigen uptake and presentation, and low immunogenicity. Here, whole cancer cells are processed to generate antigen-rich, membrane-enclosed subcellular particles, termed "reduced cancer cells", that reflect the diversity and breadth of the parent cancer cell antigen repertoire, and can be loaded with disparate adjuvant payloads. These vesicular particles enhance the uptake of the adjuvant payload, and potentiate the activation of primary dendritic cells in vitro. Similarly, reduced cancer cell-associated antigens are more efficiently presented by primary dendritic cells in vitro than their soluble counterparts or lysate control. In mice, vaccination using adjuvant-loaded reduced cancer cells facilitates the induction of antigen-specific cellular and humoral immune responses. Taken together, these observations demonstrate that adjuvant-loaded reduced cancer cells could be utilized in cancer vaccines as an alternative to lysate.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Portadores de Fármacos , Animais , Anticorpos Antineoplásicos/biossíntese , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Imunidade Celular , Camundongos
12.
Int J Mol Sci ; 15(1): 1096-111, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24441567

RESUMO

Hydrogels and, in particular, supramolecular hydrogels show promising properties for application in regenerative medicine because of their ability to adapt to the natural environment these materials are brought into. However, only few studies focus on the structure-property relationships in supramolecular hydrogels. Here, we study in detail both the structure and the mechanical properties of such a network, composed of poly(ethylene glycol), end-functionalized with ureido-pyrimidinone fourfold hydrogen bonding units. This network is responsive to triggers such as concentration, temperature and pH. To obtain more insight into the sol-gel transition of the system, both rheology and small-angle X-ray scattering (SAXS) are used. We show that the sol-gel transitions based on these three triggers, as measured by rheology, coincide with the appearance of a structural feature in SAXS. We attribute this feature to the presence of hydrophobic domains where cross-links are formed. These results provide more insight into the mechanism of network formation in these materials, which can be exploited for tailoring their behavior for biomedical applications, where one of the triggers discussed might be used.


Assuntos
Hidrogéis/química , Reologia , Espalhamento a Baixo Ângulo , Difração de Raios X , Ligação de Hidrogênio , Polietilenoglicóis/química , Pirimidinonas/química
13.
ACS Nano ; 18(2): 1381-1395, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38126310

RESUMO

Dendritic cells (DCs) regulate immune priming by expressing programmed death ligand 1 (PD-L1) and PD-L2, which interact with the inhibitory receptor PD-1 on activated T cells. PD-1 signaling regulates T cell effector functions and limits autoimmunity. Tumor cells can hijack this pathway by overexpressing PD-L1 to suppress antitumor T cell responses. Blocking this inhibitory pathway has been beneficial for the treatment of various cancer types, although only a subset of patients responds. A deepened understanding of the spatial organization and molecular interplay between PD-1 and its ligands may inform the design of more efficacious nanotherapeutics. We visualized the natural molecular PD-L1 organization on DCs by DNA-PAINT microscopy and created a template to engineer DNA-based nanoclusters presenting PD-1 at defined valencies, distances, and patterns. These multivalent nanomaterials were examined for their cellular binding and blocking ability. Our data show that PD-1 nano-organization has profound effects on ligand interaction and that the valency of PD-1 molecules modulates the effectiveness in restoring T cell function. This work highlights the power of spatially controlled functional materials to unravel the importance of multivalent patterns in the PD-1 pathway and presents alternative design strategies for immune-engineering.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Receptor de Morte Celular Programada 1 , Linfócitos T , Neoplasias/metabolismo , DNA/metabolismo
14.
J Am Chem Soc ; 135(30): 11159-64, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23829684

RESUMO

In natural systems, highly synergistic non-covalent interactions among biomolecular components exert mesoscopic control over hierarchical assemblies. We herein present a multicomponent self-assembly strategy to tune hierarchical supramolecular polymer architectures in water using highly affine and directional ureidopyrimidinone-poly(ethylene glycol)s (UPy-PEG). Using scattering methods and oscillatory rheology, we observe the structural and mechanical regulation of entangled monofunctional UPy-PEG fibrils by cross-linking bifunctional UPy-PEG fibrils. This supramolecular mixing approach opens the door to a range of subtly distinct materials for chemical and biological applications.


Assuntos
Carbamatos/química , Polietilenoglicóis/química , Pirimidinonas/química , Ureia/análogos & derivados , Água/química , Modelos Moleculares , Conformação Molecular , Ureia/química
15.
Methods Mol Biol ; 2639: 209-229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166720

RESUMO

This chapter discusses the methods involved in achieving and analyzing cellular uptake of DNA origami. While cells naturally internalize substances from their surroundings, more than a simple addition of DNA origami in the surrounding cell medium is necessary to ensure DNA origami particles successfully enter the intracellular environment. Starting with the folding of the DNA, careful handling of sterile buffers and tools is essential, as well as the use of an endotoxin free scaffold. We explain how DNA origami needs a certain form of stabilization or protection to survive the degrading low-salt and high-nuclease environment of common cell culture media. Depending on the preferred method of post-uptake analysis (confocal), microscopy, or flow cytometry, we elaborate on the full protocols and crucial steps to prepare cell uptake experiments. Finally, notes are added on the intracellular fate (see Notes 14 and 15), and cellular retention of DNA origami (see Note 16) is discussed.


Assuntos
Nanoestruturas , Nanotecnologia , Nanotecnologia/métodos , DNA/metabolismo , Transporte Biológico , Microscopia , Conformação de Ácido Nucleico
16.
ACS Polym Au ; 3(4): 344-353, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37576710

RESUMO

With DNA-based nanomaterials being designed for applications in cellular environments, the need arises to accurately understand their surface interactions toward biological targets. As for any material exposed to protein-rich cell culture conditions, a protein corona will establish around DNA nanoparticles, potentially altering the a-priori designed particle function. Here, we first set out to identify the protein corona around DNA origami nanomaterials, taking into account the application of stabilizing block co-polymer coatings (oligolysine-1kPEG or oligolysine-5kPEG) widely used to ensure particle integrity. By implementing a label-free methodology, the distinct polymer coating conditions show unique protein profiles, predominantly defined by differences in the molecular weight and isoelectric point of the adsorbed proteins. Interestingly, none of the applied coatings reduced the diversity of the proteins detected within the specific coronae. We then biased the protein corona through pre-incubation with selected proteins and show significant changes in the cell uptake. Our study contributes to a deeper understanding of the complex interplay between DNA nanomaterials, proteins, and cells at the bio-interface.

17.
Nanoscale ; 15(6): 2849-2859, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36688792

RESUMO

Nucleic acids and lipids function in close proximity in biological processes, as well as in nanoengineered constructs for therapeutic applications. As both molecules carry a rich charge profile, and frequently coexist in complex ionic solutions, the electrostatics surely play a pivotal role in interactions between them. Here we discuss how each component of a DNA/ion/lipid system determines its electrostatic attachment. We examine membrane binding of a library of DNA molecules varying from nanoengineered DNA origami through plasmids to short DNA domains, demonstrating the interplay between the molecular structure of the nucleic acid and the phase of lipid bilayers. Furthermore, the magnitude of DNA/lipid interactions is tuned by varying the concentration of magnesium ions in the physiologically relevant range. Notably, we observe that the structural and mechanical properties of DNA are critical in determining its attachment to lipid bilayers and demonstrate that binding is correlated positively with the size, and negatively with the flexibility of the nucleic acid. The findings are utilized in a proof-of-concept comparison of membrane interactions of two DNA origami designs - potential nanotherapeutic platforms - showing how the results can have a direct impact on the choice of DNA geometry for biotechnological applications.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Bicamadas Lipídicas/química , Eletricidade Estática , DNA/química , Nanoestruturas/química , Íons
18.
J Am Chem Soc ; 133(17): 6636-41, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21473586

RESUMO

Phage display is widely used for the selection of target-specific peptide sequences. Presentation of phage peptides on a multivalent platform can be used to (partially) restore the binding affinity. Here, we present a detailed analysis of the effects of valency, linker choice, and receptor density on binding affinity of a multivalent architecture, using streptavidin (SA) as model multivalent receptor. For surfaces with low receptor densities, the SA binding affinity of multivalent dendritic phage peptide constructs increases over 2 orders of magnitude over the monovalent species (e.g., K(d,mono) = 120 µM vs K(d,tetra) = 1 µM), consistent with previous work. However, the affinity of the SA-binding phage presenting the exact same peptides was 16 pM when dense receptor surfaces used for initial phage display were used in assays. The phage affinity for SA-coated surfaces weakens severely toward the nanomolar regime when surface density of SA is decreased. A similarly strong dependence in this respect was observed for dendritic phage analogues. When presented with a dense SA-coated surface, dendrimer display affords up to a 10(4)-fold gain in affinity over the monovalent peptide. The interplay between ligand valency and receptor density is a fundamental aspect of multivalent targeting strategies in biological systems. The perspective offered here suggests that in vivo targeting schemes might best be served to conduct ligand selection under physiologically relevant receptor density surfaces, either by controlling the receptor density placed at the selection surface or by using more biologically relevant intact cells and tissues.


Assuntos
Dendrímeros/metabolismo , Biblioteca de Peptídeos , Peptídeos/metabolismo , Estreptavidina/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Ligação Proteica
19.
ACS Nano ; 15(11): 17668-17677, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34613711

RESUMO

DNA-based nanostructures are actively gaining interest as tools for biomedical and therapeutic applications following the recent development of protective coating strategies prolonging structural integrity in physiological conditions. For tailored biological action, these nanostructures are often functionalized with targeting or imaging labels using DNA base pairing. Only if these labels are accessible on the structure's surface will they be able to interact with their intended biological target. However, the accessibility of functional sites for different geometries and environments, specifically after the application of a protective coating, is currently not known. Here, we assay this accessibility on the level of single handle strands with two- and three-dimensional resolution using DNA-PAINT and show that the hybridization kinetics of top and bottom sides on the same nanostructure linked to a surface remain unaltered. We furthermore demonstrate that the functionality of the structures remains available after an oligolysine-PEG coating is applied, enabling bioassays where functionality and stability are imperative.


Assuntos
DNA , Nanoestruturas , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Cinética , Nanotecnologia/métodos
20.
Adv Mater ; 33(37): e2008111, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34337776

RESUMO

The extracellular matrix (ECM) forms through hierarchical assembly of small and larger polymeric molecules into a transient, hydrogel-like fibrous network that provides mechanical support and biochemical cues to cells. Synthetic, fibrous supramolecular networks formed via non-covalent assembly of various molecules are therefore potential candidates as synthetic mimics of the natural ECM, provided that functionalization with biochemical cues is effective. Here, combinations of slow and fast exchanging molecules that self-assemble into supramolecular fibers are employed to form transient hydrogel networks with tunable dynamic behavior. Obtained results prove that modulating the ratio between these molecules dictates the extent of dynamic behavior of the hydrogels at both the molecular and the network level, which is proposed to enable effective incorporation of cell-adhesive functionalities in these materials. Excitingly, the dynamic nature of the supramolecular components in this system can be conveniently employed to formulate multicomponent supramolecular hydrogels for easy culturing and encapsulation of single cells, spheroids, and organoids. Importantly, these findings highlight the significance of molecular design and exchange dynamics for the application of supramolecular hydrogels as synthetic ECM mimics.


Assuntos
Encapsulamento de Células/métodos , Hidrogéis/química , Vasos Sanguíneos/citologia , Adesão Celular , Matriz Extracelular/química , Recuperação de Fluorescência Após Fotodegradação , Corantes Fluorescentes/química , Humanos , Polietilenoglicóis/química , Pirimidinonas/sangue , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA