RESUMO
A safe and effective vaccine against COVID-19 is urgently needed in quantities that are sufficient to immunize large populations. Here we report the preclinical development of two vaccine candidates (BNT162b1 and BNT162b2) that contain nucleoside-modified messenger RNA that encodes immunogens derived from the spike glycoprotein (S) of SARS-CoV-2, formulated in lipid nanoparticles. BNT162b1 encodes a soluble, secreted trimerized receptor-binding domain (known as the RBD-foldon). BNT162b2 encodes the full-length transmembrane S glycoprotein, locked in its prefusion conformation by the substitution of two residues with proline (S(K986P/V987P); hereafter, S(P2) (also known as P2 S)). The flexibly tethered RBDs of the RBD-foldon bind to human ACE2 with high avidity. Approximately 20% of the S(P2) trimers are in the two-RBD 'down', one-RBD 'up' state. In mice, one intramuscular dose of either candidate vaccine elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong T-helper-1 CD4+ and IFNγ+CD8+ T cell responses. Prime-boost vaccination of rhesus macaques (Macaca mulatta) with the BNT162b candidates elicits SARS-CoV-2-neutralizing geometric mean titres that are 8.2-18.2× that of a panel of SARS-CoV-2-convalescent human sera. The vaccine candidates protect macaques against challenge with SARS-CoV-2; in particular, BNT162b2 protects the lower respiratory tract against the presence of viral RNA and shows no evidence of disease enhancement. Both candidates are being evaluated in phase I trials in Germany and the USA1-3, and BNT162b2 is being evaluated in an ongoing global phase II/III trial (NCT04380701 and NCT04368728).
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Modelos Animais de Doenças , SARS-CoV-2/imunologia , Envelhecimento/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Vacina BNT162 , COVID-19/sangue , COVID-19/terapia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Linhagem Celular , Ensaios Clínicos como Assunto , Feminino , Humanos , Imunização Passiva , Internacionalidade , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Multimerização Proteica , RNA Viral/análise , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , SARS-CoV-2/química , SARS-CoV-2/genética , Solubilidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/química , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Soroterapia para COVID-19 , Vacinas de mRNARESUMO
Molecularly imprinted polymers (MIPs) are high affinity robust synthetic receptors, which can be optimally synthesized and manufactured more economically than their biological equivalents (i.e. antibody). In MIPs production, rational design based on molecular modeling is a commonly employed technique. This mostly aids in (i) virtual screening of functional monomers (FMs), (ii) optimization of monomer-template ratio, and (iii) selectivity analysis. We present MIRATE, an integrated science gateway for the intelligent design of MIPs. By combining and adapting multiple state-of-the-art bioinformatics tools into automated and innovative pipelines, MIRATE guides the user through the entire process of MIPs' design. The platform allows the user to fully customize each stage involved in the MIPs' design, with the main goal to support the synthesis in the wet-laboratory. Availability: MIRATE is freely accessible with no login requirement at http://mirate.di.univr.it/. All major browsers are supported.
Assuntos
Hepcidinas/química , Impressão Molecular/métodos , Polímeros/química , Receptores Artificiais/química , Troponina I/química , Hepcidinas/metabolismo , Humanos , Simulação de Dinâmica Molecular , Receptores Artificiais/metabolismo , Troponina I/metabolismoRESUMO
Molecularly Imprinted Polymers (MIPs) are highly advantageous in the field of analytical chemistry. However, interference from secondary molecules can also impede capture of a target by a MIP receptor. This greatly complicates the design process and often requires extensive laboratory screening which is time consuming, costly, and creates substantial waste products. Herein, is presented a new technique for screening of "virtually imprinted receptors" for rebinding of the molecular template as well as secondary structures, correlating the virtual predictions with experimentally acquired data in three case studies. This novel technique is particularly applicable to the evaluation and prediction of MIP receptor specificity and efficiency in complex aqueous systems.
Assuntos
Impressão Molecular/métodos , Polímeros/química , Interface Usuário-Computador , Acrilamida/química , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Teofilina/químicaRESUMO
A novel molecularly imprinted solid phase extraction (MISPE) methodology followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) has been developed using cylindrical shaped molecularly imprinted pills for detection of Δ(9)-tetrahydrocannabinol (THC), 11-nor-Δ(9)-tetrahydrocannabinol carboxylic acid (THC-COOH), cannabinol (CBN) and cannabidiol (CBD) in urine and oral fluid (OF). The composition of the molecular imprinted polymer (MIP) was optimized based on the screening results of a non-imprinted polymer library (NIP-library). Thus, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross-linker were selected for the preparation of the MIP, using catechin as a mimic template. MISPE pills were incubated with 0.5 mL urine or OF sample for adsorption of analytes. For desorption, the pills were transferred to a vial with 2 mL of methanol:acetic acid (4:1) and sonicated for 15 min. The elution solvent was evaporated and reconstituted in methanol:formic acid (0.1%) 50:50 to inject in LC-MS/MS. The developed method was linear over the range from 1 to 500 ng mL(-1) in urine and from 0.75 to 500 ng mL(-1) in OF for all four analytes. Intra- and inter-day imprecision were <15%. Extraction recovery was 50-111%, process efficiency 15.4-54.5% and matrix effect ranged from -78.0 to -6.1%. Finally, the optimized and validated method was applied to 4 urine and 5 OF specimens. This is the first method for the determination of THC, THC-COOH, CBN and CBD in urine and OF using MISPE technology.