Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 585(7825): 420-425, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879486

RESUMO

The opsin family of G-protein-coupled receptors are used as light detectors in animals. Opsin 5 (also known as neuropsin or OPN5) is a highly conserved opsin that is sensitive to visible violet light1,2. In mice, OPN5 is a known photoreceptor in the retina3 and skin4 but is also expressed in the hypothalamic preoptic area (POA)5. Here we describe a light-sensing pathway in which POA neurons that express Opn5 regulate thermogenesis in brown adipose tissue (BAT). We show that Opn5 is expressed in glutamatergic warm-sensing POA neurons that receive synaptic input from several thermoregulatory nuclei. We further show that Opn5 POA neurons project to BAT and decrease its activity under chemogenetic stimulation. Opn5-null mice show overactive BAT, increased body temperature, and exaggerated thermogenesis when cold-challenged. Moreover, violet photostimulation during cold exposure acutely suppresses BAT temperature in wild-type mice but not in Opn5-null mice. Direct measurements of intracellular cAMP ex vivo show that Opn5 POA neurons increase cAMP when stimulated with violet light. This analysis thus identifies a violet light-sensitive deep brain photoreceptor that normally suppresses BAT thermogenesis.


Assuntos
Cor , Luz , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Neurônios/efeitos da radiação , Opsinas/metabolismo , Área Pré-Óptica/citologia , Termogênese/efeitos da radiação , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos da radiação , Animais , Temperatura Corporal , Temperatura Baixa , AMP Cíclico/metabolismo , Feminino , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Opsinas/deficiência , Opsinas/genética , Termogênese/genética
2.
Neurocrit Care ; 39(3): 655-668, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36539593

RESUMO

BACKGROUND: Spreading depolarizations (SDs) can be viewed at a cellular level using calcium imaging (CI), but this approach is limited to laboratory applications and animal experiments. Optical intrinsic signal imaging (OISI), on the other hand, is amenable to clinical use and allows viewing of large cortical areas without contrast agents. A better understanding of the behavior of OISI-observed SDs under different brain conditions is needed. METHODS: We performed simultaneous calcium and OISI of SDs in GCaMP6f mice. SDs propagate through the cortex as a pathological wave and trigger a neurovascular response that can be imaged with both techniques. We imaged both mechanically stimulated SDs (sSDs) in healthy brains and terminal SDs (tSDs) induced by system hypoxia and cardiopulmonary failure. RESULTS: We observed a lag in the detection of SDs in the OISI channels compared with CI. sSDs had a faster velocity than tSDs, and tSDs had a greater initial velocity for the first 400 µm when observed with CI compared with OISI. However, both imaging methods revealed similar characteristics, including a decrease in the sSD (but not tSD) velocities as the wave moved away from the site of initial detection. CI and OISI also showed similar spatial propagation of the SD throughout the image field. Importantly, only OISI allowed regional ischemia to be detected before tSDs occurred. CONCLUSIONS: Altogether, data indicate that monitoring either neural activity or intrinsic signals with high-resolution optical imaging can be useful to assess SDs, but OISI may be a clinically applicable way to predict, and therefore possibly mitigate, hypoxic-ischemic tSDs.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Camundongos , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Canais de Cálcio , Cálcio , Encéfalo , Isquemia
3.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L162-L173, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851724

RESUMO

Most lung development occurs in the context of cyclic stretch. Alteration of the mechanical microenvironment is a common feature of many pulmonary diseases, with congenital diaphragmatic hernia (CDH) and fetal tracheal occlusion (FETO, a therapy for CDH) being extreme examples with changes in lung structure, cell differentiation, and function. To address limitations in cell culture and in vivo mechanotransductive models, we developed two mouse lung organoid (mLO) mechanotransductive models using postnatal day 5 (PND5) mouse lung CD326-positive cells and fibroblasts subjected to increased, decreased, and cyclic strain. In the first model, mLOs were exposed to forskolin (FSK) and/or disrupted (DIS) and evaluated at 20 h. mLO cross-sectional area changed by +59%, +24%, and -68% in FSK, control, and DIS mLOs, respectively. FSK-treated organoids had twice as many proliferating cells as other organoids. In the second model, 20 h of 10.25% biaxial cyclic strain increased the mRNAs of lung mesenchymal cell lineages compared with static stretch and no stretch. Cyclic stretch increased TGF-ß and integrin-mediated signaling, with upstream analysis indicating roles for histone deacetylases, microRNAs, and long noncoding RNAs. Cyclic stretch mLOs increased αSMA-positive and αSMA-PDGFRα-double-positive cells compared with no stretch and static stretch mLOs. In this PND5 mLO mechanotransductive model, cell proliferation is increased by static stretch, and cyclic stretch induces mesenchymal gene expression changes important in postnatal lung development.


Assuntos
Pulmão/patologia , Organoides/patologia , Estresse Mecânico , Animais , Colforsina/farmacologia , Fibroblastos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Mecanotransdução Celular/genética , Mesoderma/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos
4.
J Allergy Clin Immunol ; 144(4): 1058-1073.e3, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31175877

RESUMO

BACKGROUND: Food-induced anaphylaxis (FIA) is an IgE-dependent immune response that can affect multiple organs and lead to life-threatening complications. The processes by which food allergens cross the mucosal surface and are delivered to the subepithelial immune compartment to promote the clinical manifestations associated with food-triggered anaphylaxis are largely unexplored. OBJECTIVE: We sought to define the processes involved in the translocation of food allergens across the mucosal epithelial surface to the subepithelial immune compartment in FIA. METHODS: Two-photon confocal and immunofluorescence microscopy was used to visualize and trace food allergen passage in a murine model of FIA. A human colon cancer cell line, RNA silencing, and pharmacologic approaches were used to identify the molecular regulation of intestinal epithelial allergen uptake and translocation. Human intestinal organoid transplants were used to demonstrate the conservation of these molecular processes in human tissues. RESULTS: Food allergens are sampled by using small intestine (SI) epithelial secretory cells (termed secretory antigen passages [SAPs]) that are localized to the SI villous and crypt region. SAPs channel food allergens to lamina propria mucosal mast cells through an IL-13-CD38-cyclic adenosine diphosphate ribose (cADPR)-dependent process. Blockade of IL-13-induced CD38/cADPR-dependent SAP antigen passaging in mice inhibited induction of clinical manifestations of FIA. IL-13-CD38-cADPR-dependent SAP sampling of food allergens was conserved in human intestinal organoids. CONCLUSION: We identify that SAPs are a mechanism by which food allergens are channeled across the SI epithelium mediated by the IL-13/CD38/cADPR pathway, regulate the onset of FIA reactions, and are conserved in human intestine.


Assuntos
Alérgenos/imunologia , Anafilaxia/imunologia , Hipersensibilidade Alimentar/imunologia , Interleucina-13/imunologia , Mucosa Intestinal/imunologia , Alérgenos/metabolismo , Anafilaxia/metabolismo , Animais , Hipersensibilidade Alimentar/metabolismo , Humanos , Imunoglobulina E/imunologia , Interleucina-13/metabolismo , Mucosa Intestinal/metabolismo , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID
5.
Am J Respir Cell Mol Biol ; 59(2): 167-178, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29420065

RESUMO

Alpha-1 antitrypsin (AAT) deficiency-related emphysema is the fourth leading indication for lung transplant. Chymotrypsin-like elastase 1 (Cela1) is a digestive protease that is expressed during lung development in association with regions of elastin remodeling, exhibits stretch-dependent expression during lung regeneration, and binds lung elastin in a stretch-dependent manner. AAT covalently neutralizes Cela1 in vitro. We sought to determine the role of Cela1 in postnatal lung physiology, whether it interacted with AAT in vivo, and to detect any effects it may have in the context of AAT deficiency. The lungs of Cela1-/- mice had aberrant lung elastin structure and higher elastance as assessed with the flexiVent system. On the basis of in situ zymography with ex vivo lung stretch, Cela1 was solely responsible for stretch-inducible lung elastase activity. By mass spectrometry, Cela1 degraded mature elastin similarly to pancreatic elastase. Cela1 promoter and protein sequences were phylogenetically distinct in the placental mammal lineage, suggesting an adaptive role for lung-expressed Cela1 in this clade. A 6-week antisense oligonucleotide mouse model of AAT deficiency resulted in emphysema with increased Cela1 mRNA and reduction of approximately 70 kD Cela1, consistent with covalent binding of Cela1 by AAT. Cela1-/- mice were completely protected against emphysema in this model. Cela1 was increased in human AAT-deficient emphysema. Cela1 is important in physiologic and pathologic stretch-dependent remodeling processes in the postnatal lung. AAT is an important regulator of this process. Our findings provide proof of concept for the development of anti-Cela1 therapies to prevent and/or treat AAT-deficient emphysema.


Assuntos
Enfisema/genética , Regulação Enzimológica da Expressão Gênica/genética , Elastase Pancreática/metabolismo , alfa 1-Antitripsina/genética , Animais , Fenômenos Biomecânicos , Elastina/metabolismo , Fibroblastos/metabolismo , Humanos , Pulmão/crescimento & desenvolvimento , Camundongos Knockout , Elastase Pancreática/genética
6.
FASEB J ; 30(2): 590-600, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26443822

RESUMO

Lung stretch is critical for normal lung development and for compensatory lung growth after pneumonectomy (PNX), but the mechanisms by which strain induces matrix remodeling are unclear. Our prior work demonstrated an association of chymotrypsin-like elastase 1 (Cela1) with lung elastin remodeling, and that strain triggered a near-instantaneous elastin-remodeling response. We sought to determine whether stretch regulates Cela1 expression and Cela1 binding to lung elastin. In C57BL/6J mice, Cela1 protein increased 176-fold during lung morphogenesis. Cela1 was covalently bound to serpin peptidase inhibitor, clade A, member 1, resulting in a higher molecular mass in lung homogenate compared to pancreas homogenate. Post-PNX, Cela1 mRNA increased 6-fold, protein 3-fold, and Cela1-positive cells 2-fold. Cela1 was expressed predominantly in alveolar type II cells in the embryonic lung and predominantly in CD90-positive lung fibroblasts postnatally. During compensatory lung growth, Cela1 expression was induced in nonproliferative mesenchymal cells. In ex vivo mouse lung sections, stretch increased Cela1 binding to lung tissue by 46%. Competitive inhibition with soluble elastin completely abrogated this increase. Areas of stretch-induced elastase activity and Cela1 binding colocalized. The stretch-dependent expression and binding kinetics of Cela1 indicate an important role in stretch-dependent remodeling of the peripheral lung during development and regeneration.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Pulmão/fisiologia , Elastase Pancreática/metabolismo , Sequência de Aminoácidos , Animais , Fenômenos Biomecânicos , Células Cultivadas , Quimases , Elastina/metabolismo , Fibroblastos/metabolismo , Rim/citologia , Rim/embriologia , Pulmão/citologia , Camundongos , Elastase Pancreática/genética , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
7.
JCI Insight ; 9(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193533

RESUMO

There are no therapies to prevent emphysema progression. Chymotrypsin-like elastase 1 (CELA1) is a serine protease that binds and cleaves lung elastin in a stretch-dependent manner and is required for emphysema in a murine antisense oligonucleotide model of α-1 antitrypsin (AAT) deficiency. This study tested whether CELA1 is important in strain-mediated lung matrix destruction in non-AAT-deficient emphysema and the efficacy of CELA1 neutralization. Airspace simplification was quantified after administration of tracheal porcine pancreatic elastase (PPE), after 8 months of cigarette smoke (CS) exposure, and in aging. In all 3 models, Cela1-/- mice had less emphysema and preserved lung elastin despite increased lung immune cells. A CELA1-neutralizing antibody was developed (KF4), and it inhibited stretch-inducible lung elastase in ex vivo mouse and human lung and immunoprecipitated CELA1 from human lung. In mice, systemically administered KF4 penetrated lung tissue in a dose-dependent manner and 5 mg/kg weekly prevented emphysema in the PPE model with both pre- and postinjury initiation and in the CS model. KF4 did not increase lung immune cells. CELA1-mediated lung matrix remodeling in response to strain is an important contributor to postnatal airspace simplification, and we believe that KF4 could be developed as a lung matrix-stabilizing therapy in emphysema.


Assuntos
Enfisema , Enfisema Pulmonar , Animais , Humanos , Camundongos , Envelhecimento , Elastina , Elastase Pancreática , Enfisema Pulmonar/prevenção & controle , Suínos
8.
Cell Rep ; 30(3): 672-686.e8, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968245

RESUMO

Almost all life forms can detect and decode light information for adaptive advantage. Examples include the visual system, in which photoreceptor signals are processed into virtual images, and the circadian system, in which light entrains a physiological clock. Here we describe a light response pathway in mice that employs encephalopsin (OPN3, a 480 nm, blue-light-responsive opsin) to regulate the function of adipocytes. Germline null and adipocyte-specific conditional null mice show a light- and Opn3-dependent deficit in thermogenesis and become hypothermic upon cold exposure. We show that stimulating mouse adipocytes with blue light enhances the lipolysis response and, in particular, phosphorylation of hormone-sensitive lipase. This response is Opn3 dependent. These data establish a key mechanism in which light-dependent, local regulation of the lipolysis response in white adipocytes regulates energy metabolism.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Marrons/efeitos da radiação , Adipócitos Brancos/metabolismo , Adipócitos Brancos/efeitos da radiação , Luz , Opsinas de Bastonetes/metabolismo , Termogênese/efeitos da radiação , Animais , Temperatura Baixa , Metabolismo Energético/efeitos da radiação , Perfilação da Expressão Gênica , Lipólise/efeitos da radiação , Camundongos Endogâmicos C57BL , Fenótipo , Fótons , Termogênese/genética
9.
Nat Cell Biol ; 21(4): 420-429, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936473

RESUMO

During mouse postnatal eye development, the embryonic hyaloid vascular network regresses from the vitreous as an adaption for high-acuity vision. This process occurs with precisely controlled timing. Here, we show that opsin 5 (OPN5; also known as neuropsin)-dependent retinal light responses regulate vascular development in the postnatal eye. In Opn5-null mice, hyaloid vessels regress precociously. We demonstrate that 380-nm light stimulation via OPN5 and VGAT (the vesicular GABA/glycine transporter) in retinal ganglion cells enhances the activity of inner retinal DAT (also known as SLC6A3; a dopamine reuptake transporter) and thus suppresses vitreal dopamine. In turn, dopamine acts directly on hyaloid vascular endothelial cells to suppress the activity of vascular endothelial growth factor receptor 2 (VEGFR2) and promote hyaloid vessel regression. With OPN5 loss of function, the vitreous dopamine level is elevated and results in premature hyaloid regression. These investigations identify violet light as a developmental timing cue that, via an OPN5-dopamine pathway, regulates optic axis clearance in preparation for visual function.


Assuntos
Dopamina/metabolismo , Olho/irrigação sanguínea , Luz , Proteínas de Membrana/metabolismo , Opsinas/metabolismo , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Endotélio Vascular/metabolismo , Olho/enzimologia , Olho/crescimento & desenvolvimento , Olho/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Opsinas/genética , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos da radiação , Treonina/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/fisiologia , Corpo Vítreo/metabolismo
10.
J Clin Pathol ; 70(11): 984-987, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28596154

RESUMO

Radiogenomics promises to identify tumour imaging features indicative of genomic or proteomic aberrations that can be therapeutically targeted allowing precision personalised therapy. An accurate radiological-pathological correlation is critical to the process of radiogenomic characterisation of tumours. An accurate correlation, however, is difficult to achieve with current pathological sectioning techniques which result in sectioning in non-standard planes. The purpose of this work is to present a technique to standardise hepatic sectioning to facilitateradiological-pathological correlation. We describe a process in which three-dimensional (3D)-printed specimen boxes based on preoperative cross-sectional imaging (CT and MRI) can be used to facilitate pathological sectioning in standard planes immediately on hepatic resection enabling improved tumour mapping. We have applied this process in 13 patients undergoing hepatectomy and have observed close correlation between imaging and gross pathology in patients with both unifocal and multifocal tumours.


Assuntos
Hepatectomia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Imageamento por Ressonância Magnética/instrumentação , Microtomia/instrumentação , Impressão Tridimensional , Tomografia Computadorizada por Raios X/instrumentação , Adolescente , Desenho Assistido por Computador , Desenho de Equipamento , Feminino , Humanos , Lactente , Fígado/cirurgia , Neoplasias Hepáticas/cirurgia , Masculino , Valor Preditivo dos Testes , Interpretação de Imagem Radiográfica Assistida por Computador
11.
J Biomech ; 49(14): 3334-3339, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27589930

RESUMO

Cellular mechanotransduction is an integral part of many crucial physiological processes, but non-invasive tools for quantifying intracellular strain in vivo are not available for complex tissues such as bone. As a first step to address this gap, we have utilized a novel, non-invasive approach to quantify cellular strain in vitro by employing a transfected alpha-actinin Förster Resonance Energy Transfer (FRET) sensor. Following validation experiments, mouse fibroblasts transfected to express FRET sensors were seeded to a silicone membrane and subjected to up to 10% tensile strain mounted on a multi-photon microscope. During tensile strain, fluorescent emission of acceptor (YFP) and donor (CFP) proteins was quantified. YFP/CFP ratio was normalized to the initial baseline (unstretched) ratio for each cell which demonstrates a negative linear correlation between the relative proximity ratio of emission spectra and cell strain, with a mean decrease of 1.017% normalized ratio for every percent strain experienced by the cell. The exciting implications of our findings are that the discovery of the stable correlation between loss of FRET and experimentally applied strain opens intriguing possibilities for future use of this technology with in vivo research, leading to discoveries improving disease treatments in mechanically sensitive tissues such as bone.


Assuntos
Calibragem , Citoesqueleto/metabolismo , Transferência Ressonante de Energia de Fluorescência , Estresse Mecânico , Actinina/metabolismo , Animais , Fenômenos Biomecânicos , Sobrevivência Celular , Células Cultivadas , Feminino , Proteínas Luminescentes/metabolismo , Mecanotransdução Celular , Camundongos
12.
J Appl Physiol (1985) ; 118(7): 921-31, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25614601

RESUMO

Synthesis and remodeling of the lung matrix is necessary for primary and compensatory lung growth. Because cyclic negative force is applied to developing lung tissue during the respiratory cycle, we hypothesized that stretch is a critical regulator of lung matrix remodeling. By using quantitative image analysis of whole-lung and whole-lobe elastin in situ zymography images, we demonstrated that elastase activity increased twofold during the alveolar stage of postnatal lung morphogenesis in the mouse. Remodeling was restricted to alveolar walls and ducts and was nearly absent in dense elastin band structures. In the mouse pneumonectomy model of compensatory lung growth, elastase activity increased threefold, peaking at 14 days postpneumonectomy and was higher in the accessory lobe compared with other lobes. Remodeling during normal development and during compensatory lung growth was different with increased major airway and pulmonary arterial remodeling during development but not regeneration, and with homogenous remodeling throughout the parenchyma during development, but increased remodeling only in subpleural regions during compensatory lung growth. Left lung wax plombage prevented increased lung elastin during compensatory lung growth. To test whether the adult lung retains an innate capacity to remodel elastin, we developed a confocal microscope-compatible stretching device. In ex vivo adult mouse lung sections, lung elastase activity increased exponentially with strain and in peripheral regions of lung more than in central regions. Our study demonstrates that lung elastase activity is stretch-dependent and supports a model in which externally applied forces influence the composition, structure, and function of the matrix during periods of alveolar septation.


Assuntos
Pulmão/enzimologia , Pulmão/crescimento & desenvolvimento , Mecanotransdução Celular/fisiologia , Morfogênese/fisiologia , Elastase Pancreática/fisiologia , Animais , Módulo de Elasticidade/fisiologia , Ativação Enzimática , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Estresse Mecânico , Resistência à Tração/fisiologia , Distribuição Tecidual
13.
PLoS One ; 7(9): e46044, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029379

RESUMO

Stress is the most commonly reported precipitating factor for seizures in patients with epilepsy. Despite compelling anecdotal evidence for stress-induced seizures, animal models of the phenomena are sparse and possible mechanisms are unclear. Here, we tested the hypothesis that increased levels of the stress-associated hormone corticosterone (CORT) would increase epileptiform activity and spontaneous seizure frequency in mice rendered epileptic following pilocarpine-induced status epilepticus. We monitored video-EEG activity in pilocarpine-treated mice 24/7 for a period of four or more weeks, during which animals were serially treated with CORT or vehicle. CORT increased the frequency and duration of epileptiform events within the first 24 hours of treatment, and this effect persisted for up to two weeks following termination of CORT injections. Interestingly, vehicle injection produced a transient spike in CORT levels - presumably due to the stress of injection - and a modest but significant increase in epileptiform activity. Neither CORT nor vehicle treatment significantly altered seizure frequency; although a small subset of animals did appear responsive. Taken together, our findings indicate that treatment of epileptic animals with exogenous CORT designed to mimic chronic stress can induce a persistent increase in interictal epileptiform activity.


Assuntos
Anti-Inflamatórios/farmacologia , Corticosterona/farmacologia , Convulsões/tratamento farmacológico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia , Animais , Anti-Inflamatórios/sangue , Anti-Inflamatórios/metabolismo , Corticosterona/sangue , Corticosterona/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pilocarpina , Estado Epiléptico/sangue , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA