Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 60(26): 7995-8005, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34613060

RESUMO

Knowledge of the spatial and temporal distribution of heat flux is of great interest for the quantification of heat sources. In this work, we describe the development of a new ultra-broadband contactless imaging power meter based on electromagnetic to infrared technology. This new sensor and the mathematical processing of images enable the reconstruction of both spatial and amplitude distributions through a wide spectral range of sources. The full modeling of the thermoconverter based on 3D formalism of thermal quadrupoles is presented first before deriving a reduced model more suitable for quick and robust inverse processing. The inverse method makes it possible to simultaneously identify the heat losses and the spatial and temporal source distribution for the first time, to the best of our knowledge. Finally, measurements of multispectral sources are presented and discussed, with an emphasis on the spatial and temporal resolution, accuracy and capabilities of the power meter.

2.
Sci Rep ; 10(1): 22310, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339865

RESUMO

This work reports a multispectral tomography technique in transmission mode (called 3DITI for 3D Infrared Thermospectroscopic Imaging) based on a middle wavelength infrared (MWIR) focal plane array. This technique relies on an MWIR camera (1.5 to 5.5 µm) used in combination with a multispectral IR monochromator (400 nm to 20 µm), and a sample mounted on a rotary stage for the measurement of its transmittance at several angular positions. Based on the projections expressed in terms of a sinogram, spatial three-dimensional (3D) cubes (proper emission and absorptivity) are reconstructed using a back-projection method based on inverse Radon transform. As a validation case, IR absorptivity tomography of a reflective metallic screw is performed within a very short time, i.e., shorter than 1 min, to monitor 72 angular positions of the sample. Then, the absorptivity and proper emission tomographies of a butane-propane-air burner flame and microfluidic perfluoroalkoxy (PFA) tubing filled with water and ethanol are obtained. These unique data evidence that 3D thermo-chemical information in complex semi-transparent media can be obtained using the proposed 3DITI method. Moreover, this measurement technique presents new problems in the acquisition, storage and processing of big data. In fact, the quantity of reconstructed data can reach several TB (a tomographic sample cube of 1.5 × 1.5 × 3 cm3 is composed of more than 1 million pixels per wavelength).

3.
Rev Sci Instrum ; 85(6): 064904, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985839

RESUMO

GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10(-3) K(-1) versus 10(-5) K(-1) for the visible domain, is very promising for future thermoreflectance applications.

4.
Rev Sci Instrum ; 82(5): 054901, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21639530

RESUMO

We have combined InfraRed thermography and thermal wave techniques to perform microscale, ultrafast (microsecond) temperature field measurements. The method is based on an IR camera coupled to a microscope and synchronized to the heat source by means of phase locked function generators. The principle is based on electronic stroboscopic sampling where the low IR camera acquisition frequency f(acq) (25 Hz) undersamples a high frequency thermal wave. This technique permits the measurement of the emissive thermal response at a (microsecond) short time scale (microsecond) with the full frame mode of the IR camera with a spatial thermal resolution of 7 µm. Then it becomes possible to study 3D transient heat transfer in heterogeneous and high thermal conductive thin layers. Thus it is possible for the first time in our knowledge to achieve temperature field measurements in heterogeneous media within a wide range of time domains. The IR camera is now a suitable instrument for multiscale thermal analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA