Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Brain Stimul ; 17(4): 816-825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38997105

RESUMO

INTRODUCTION: Fear extinction is a fundamental component of exposure-based therapies for anxiety-related disorders. The renewal of fear in a different context after extinction highlights the importance of contextual factors. In this study, we aimed to investigate the causal role of the left inferior frontal gyrus (LiFG) in the context-dependency of fear extinction learning via administration of transcranial direct current stimulation (tDCS) over this area. METHODS: 180 healthy subjects were assigned to 9 groups: 3 tDCS conditions (anodal, cathodal, and sham) × 3 context combinations (AAA, ABA, and ABB). The fear conditioning/extinction task was conducted over three consecutive days: acquisition, extinction learning, and extinction recall. tDCS (2 mA, 10min) was administered during the extinction learning phase over the LiFG via a 4-electrode montage. Skin conductance response (SCR) data and self-report assessments were collected. RESULTS: During the extinction learning phase, groups with excitability-enhancing anodal tDCS showed a significantly higher fear response to the threat cues compared to cathodal and sham stimulation conditions, irrespective of contextual factors. This effect was stable until the extinction recall phase. Additionally, excitability-reducing cathodal tDCS caused a significant decrease of the response difference between the threat and safety cues during the extinction recall phase. The self-report assessments showed no significant differences between the conditions throughout the experiment. CONCLUSION: Independent of the context, excitability enhancement of the LiFG did impair fear extinction, and led to preservation of fear memory. In contrast, excitability reduction of this area enhanced fear extinction retention. These findings imply that the LiFG plays a role in the fear extinction network, which seems to be however context-independent.


Assuntos
Extinção Psicológica , Medo , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Humanos , Medo/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Extinção Psicológica/fisiologia , Masculino , Feminino , Córtex Pré-Frontal/fisiologia , Adulto , Adulto Jovem , Resposta Galvânica da Pele/fisiologia , Condicionamento Clássico/fisiologia
2.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176906

RESUMO

Functional brain imaging studies in humans suggest involvement of the cerebellum in fear conditioning but do not allow conclusions about the functional significance. The main aim of the present study was to examine whether patients with cerebellar degeneration show impaired fear conditioning and whether this is accompanied by alterations in cerebellar cortical activations. To this end, a 2 d differential fear conditioning study was conducted in 20 cerebellar patients and 21 control subjects using a 7 tesla (7 T) MRI system. Fear acquisition and extinction training were performed on day 1, followed by recall on day 2. Cerebellar patients learned to differentiate between the CS+ and CS-. Acquisition and consolidation of learned fear, however, was slowed. Additionally, extinction learning appeared to be delayed. The fMRI signal was reduced in relation to the prediction of the aversive stimulus and altered in relation to its unexpected omission. Similarly, mice with cerebellar cortical degeneration (spinocerebellar ataxia type 6, SCA6) were able to learn the fear association, but retrieval of fear memory was reduced. In sum, cerebellar cortical degeneration led to mild abnormalities in the acquisition of learned fear responses in both humans and mice, particularly manifesting postacquisition training. Future research is warranted to investigate the basis of altered fMRI signals related to fear learning.


Assuntos
Mapeamento Encefálico , Condicionamento Clássico , Humanos , Animais , Camundongos , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Aprendizagem , Imageamento por Ressonância Magnética
3.
Front Neurosci ; 18: 1389651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957187

RESUMO

Transcranial direct current stimulation (tDCS) has been studied extensively for its potential to enhance human cognitive functions in healthy individuals and to treat cognitive impairment in various clinical populations. However, little is known about how tDCS modulates the neural networks supporting cognition and the complex interplay with mediating factors that may explain the frequently observed variability of stimulation effects within and between studies. Moreover, research in this field has been characterized by substantial methodological variability, frequent lack of rigorous experimental control and small sample sizes, thereby limiting the generalizability of findings and translational potential of tDCS. The present manuscript aims to delineate how these important issues can be addressed within a neuroimaging context, to reveal the neural underpinnings, predictors and mediators of tDCS-induced behavioral modulation. We will focus on functional magnetic resonance imaging (fMRI), because it allows the investigation of tDCS effects with excellent spatial precision and sufficient temporal resolution across the entire brain. Moreover, high resolution structural imaging data can be acquired for precise localization of stimulation effects, verification of electrode positions on the scalp and realistic current modeling based on individual head and brain anatomy. However, the general principles outlined in this review will also be applicable to other imaging modalities. Following an introduction to the overall state-of-the-art in this field, we will discuss in more detail the underlying causes of variability in previous tDCS studies. Moreover, we will elaborate on design considerations for tDCS-fMRI studies, optimization of tDCS and imaging protocols and how to assure high-level experimental control. Two additional sections address the pressing need for more systematic investigation of tDCS effects across the healthy human lifespan and implications for tDCS studies in age-associated disease, and potential benefits of establishing large-scale, multidisciplinary consortia for more coordinated tDCS research in the future. We hope that this review will contribute to more coordinated, methodologically sound, transparent and reproducible research in this field. Ultimately, our aim is to facilitate a better understanding of the underlying mechanisms by which tDCS modulates human cognitive functions and more effective and individually tailored translational and clinical applications of this technique in the future.

4.
Front Hum Neurosci ; 17: 1328283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264350

RESUMO

Fear is a vital defense mechanism to potential threats, which is influenced by the cerebellum. While the cerebellum's role in acquiring fear responses is well understood, limited knowledge exists about its involvement in fear extinction. In this study, we investigated the effects of cerebellar theta band transcranial alternating current stimulation (ctACS) administered during fear extinction training, based on previous evidence from animal studies suggesting a role of cerebellar theta oscillations in associative memory formation. To this end, thirty-seven healthy right-handed male participants were recruited for a two-day differential fear renewal paradigm. On day 1, they underwent acquisition training in context A followed by extinction training in context B. On day 2, recall was tested in contexts A and B. One group of participants received ctACS in the theta band (6 Hz) during extinction training. The other group received sham ctACS. Although both groups demonstrated the ability to recall previously learned fear and distinguish between low and high threat stimuli, no significant differences were observed between the ctACS and sham groups, indicating that ctACS at this theta frequency range did not impact extinction and recall of previously acquired fear in this study. Nevertheless, using ctACS could still be useful in future research, including brain imaging studies, to better understand how the cerebellum is involved in fear and extinction processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA