RESUMO
BACKGROUND: Diplonemid flagellates are among the most abundant and species-rich of known marine microeukaryotes, colonizing all habitats, depths, and geographic regions of the world ocean. However, little is known about their genomes, biology, and ecological role. RESULTS: We present the first nuclear genome sequence from a diplonemid, the type species Diplonema papillatum. The ~ 280-Mb genome assembly contains about 32,000 protein-coding genes, likely co-transcribed in groups of up to 100. Gene clusters are separated by long repetitive regions that include numerous transposable elements, which also reside within introns. Analysis of gene-family evolution reveals that the last common diplonemid ancestor underwent considerable metabolic expansion. D. papillatum-specific gains of carbohydrate-degradation capability were apparently acquired via horizontal gene transfer. The predicted breakdown of polysaccharides including pectin and xylan is at odds with reports of peptides being the predominant carbon source of this organism. Secretome analysis together with feeding experiments suggest that D. papillatum is predatory, able to degrade cell walls of live microeukaryotes, macroalgae, and water plants, not only for protoplast feeding but also for metabolizing cell-wall carbohydrates as an energy source. The analysis of environmental barcode samples shows that D. papillatum is confined to temperate coastal waters, presumably acting in bioremediation of eutrophication. CONCLUSIONS: Nuclear genome information will allow systematic functional and cell-biology studies in D. papillatum. It will also serve as a reference for the highly diverse diplonemids and provide a point of comparison for studying gene complement evolution in the sister group of Kinetoplastida, including human-pathogenic taxa.
Assuntos
Eucariotos , Kinetoplastida , Humanos , Eucariotos/genética , Prófase Meiótica I , Euglenozoários/genética , Kinetoplastida/genética , Família Multigênica , FilogeniaRESUMO
The overall survival for patients with primary glioblastoma is very poor. Glioblastoma contains a subpopulation of glioma stem cells (GSC) that are responsible for tumour initiation, treatment resistance and recurrence. PPARα is a transcription factor involved in the control of lipid, carbohydrate and amino acid metabolism. We have recently shown that PPARα gene and protein expression is increased in glioblastoma and has independent clinical prognostic significance in multivariate analyses. In this work, we report that PPARα is overexpressed in GSC compared to foetal neural stem cells. To investigate the role of PPARα in GSC, we knocked down its expression using lentiviral transduction with short hairpin RNA (shRNA). Transduced GSC were tagged with luciferase and stereotactically xenografted into the striatum of NOD-SCID mice. Bioluminescent and magnetic resonance imaging showed that knockdown (KD) of PPARα reduced the tumourigenicity of GSC in vivo. PPARα-expressing control GSC xenografts formed invasive histological phenocopies of human glioblastoma, whereas PPARα KD GSC xenografts failed to establish viable intracranial tumours. PPARα KD GSC showed significantly reduced proliferative capacity and clonogenic potential in vitro with an increase in cellular senescence. In addition, PPARα KD resulted in significant downregulation of the stem cell factors c-Myc, nestin and SOX2. This was accompanied by downregulation of the PPARα-target genes and key regulators of fatty acid oxygenation ACOX1 and CPT1A, with no compensatory increase in glycolytic flux. These data establish the aberrant overexpression of PPARα in GSC and demonstrate that this expression functions as an important regulator of tumourigenesis, linking self-renewal and the malignant phenotype in this aggressive cancer stem cell subpopulation. We conclude that targeting GSC PPARα expression may be a therapeutically beneficial strategy with translational potential as an adjuvant treatment. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , PPAR alfa/metabolismo , RNA Interferente Pequeno/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes/métodos , Humanos , Lentivirus , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/patologia , Fenótipo , Transdução de Sinais/fisiologia , Transplante Heterólogo , Células Tumorais CultivadasRESUMO
Oxford ragwort (Senecio squalidus) is one of only two homoploid hybrid species known to have originated very recently, so it is a unique model for determining genomic changes and stabilization following homoploid hybrid speciation. Here, we provide a chromosome-level genome assembly of S. squalidus with 95% of the assembly contained in the 10 longest scaffolds, corresponding to its haploid chromosome number. We annotated 30,249 protein-coding genes and estimated that â¼62% of the genome consists of repetitive elements. We then characterized genome-wide patterns of linkage disequilibrium, polymorphism, and divergence in S. squalidus and its two parental species, finding that (1) linkage disequilibrium is highly heterogeneous, with a region on chromosome 4 showing increased values across all three species but especially in S. squalidus; (2) regions harboring genetic incompatibilities between the two parental species tend to be large, show reduced recombination, and have lower polymorphism in S. squalidus; (3) the two parental species have an unequal contribution (70:30) to the genome of S. squalidus, with long blocks of parent-specific ancestry supporting a very rapid stabilization of the hybrid lineage after hybrid formation; and (4) genomic regions with major parent ancestry exhibit an overrepresentation of loci with evidence for divergent selection occurring between the two parental species on Mount Etna. Our results show that both genetic incompatibilities and natural selection play a role in determining genome-wide reorganization following hybrid speciation and that patterns associated with homoploid hybrid speciation-typically seen in much older systems-can evolve very quickly following hybridization.
Assuntos
Especiação Genética , Genoma de Planta , Hibridização Genética , Senécio , Senécio/genética , Desequilíbrio de LigaçãoRESUMO
Chloroplasts are a common feature of plant cells and aspects of their metabolism, including photosynthesis, are influenced by low-temperature conditions. Chloroplasts contain a small circular genome that encodes essential components of the photosynthetic apparatus and chloroplast transcription/translation machinery. Here, we show that in Arabidopsis, a nuclear-encoded sigma factor that controls chloroplast transcription (SIGMA FACTOR5) contributes to adaptation to low-temperature conditions. This process involves the regulation of SIGMA FACTOR5 expression in response to cold by the bZIP transcription factors ELONGATED HYPOCOTYL5 and ELONGATED HYPOCOTYL5 HOMOLOG. The response of this pathway to cold is gated by the circadian clock, and it enhances photosynthetic efficiency during long-term cold and freezing exposure. We identify a process that integrates low-temperature and circadian signals, and modulates the response of chloroplasts to low-temperature conditions.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fator sigma/genética , Fator sigma/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura , Arabidopsis/metabolismo , Fotossíntese , Regulação da Expressão Gênica de PlantasRESUMO
The merger of two or more divergent genomes within an allopolyploid nucleus can facilitate speciation and adaptive evolution in flowering plants. Widespread changes to gene expression have been shown to result from interspecific hybridisation and polyploidy in a number of plant species, and attention has now shifted to determining the epigenetic processes that drive these changes. We present here an analysis of cytosine methylation patterns in triploid F(1) Senecio (ragwort) hybrids and their allohexaploid derivatives. We observe that, in common with similar studies in Arabidopsis, Spartina and Triticum, a small but significant proportion of loci display nonadditive methylation in the hybrids, largely resulting from interspecific hybridisation. Despite this, genome duplication results in a secondary effect on methylation, with reversion to additivity at some loci and novel methylation status at others. We also observe differences in methylation state between different allopolyploid generations, predominantly in cases of additive methylation with regard to which parental methylation state is dominant. These changes to methylation state in both F(1) triploids and their allohexaploid derivatives largely mirror the overall patterns of nonadditive gene expression observed in our previous microarray analyses and may play a causative role in generating those expression changes. These similar global changes to DNA methylation resulting from hybridisation and genome duplication may serve as a source of epigenetic variation in natural populations, facilitating adaptive evolution. Our observations that methylation state can also vary between different generations of polyploid hybrids suggests that newly formed allopolyploid species may display a high degree of epigenetic diversity upon which natural selection can act.
Assuntos
Asteraceae/genética , Citosina/metabolismo , Duplicação Gênica/genética , Hibridização Genética/genética , Poliploidia , Metilação de DNA/genética , EpigenômicaRESUMO
The neurological deterioration associated with Alzheimer's disease (AD), involving accumulation of amyloid-beta peptides and neurofibrillary tangles, is associated with evident neuroinflammation. This is now seen to be a significant contributor to pathology. Recently the tenet of the privileged status of the brain, regarding microbial compromise, has been questioned, particularly in terms of neurodegenerative diseases. It is now being considered that microbiological incursion into the central nervous system could be either an initiator or significant contributor to these. This is a novel study using 16S ribosomal gene-specific Next generation sequencing (NGS) of extracted brain tissue. A comparison was made of the bacterial species content of both frozen and formaldehyde fixed sections of a small cohort of Alzheimer-affected cases with those of cognitively unimpaired (normal). Our findings suggest an increase in bacterial populations in Alzheimer brain tissue compared with normal.