Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(16): 166902, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154648

RESUMO

Neutral silicon vacancy centers (SiV^{0}) in diamond are promising candidates for quantum applications; however, stabilizing SiV^{0} requires high-purity, boron-doped diamond, which is not a readily available material. Here, we demonstrate an alternative approach via chemical control of the diamond surface. We use low-damage chemical processing and annealing in a hydrogen environment to realize reversible and highly stable charge state tuning in undoped diamond. The resulting SiV^{0} centers display optically detected magnetic resonance and bulklike optical properties. Controlling the charge state tuning via surface termination offers a route for scalable technologies based on SiV^{0} centers, as well as charge state engineering of other defects.

2.
Rev Sci Instrum ; 87(6): 063703, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370455

RESUMO

The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes starting from commercially available diamond and show a highly efficient and robust approach for integrating these devices in a generic atomic force microscope. Our scanning probes consisting of a scanning nanopillar (200 nm diameter, 1-2 µm length) on a thin (<1 µm) cantilever structure enable efficient light extraction from diamond in combination with a high magnetic field sensitivity (ηAC≈50±20nT/Hz). As a first application of our scanning probes, we image the magnetic stray field of a single Ni nanorod. We show that this stray field can be approximated by a single dipole and estimate the NV-to-sample distance to a few tens of nanometer, which sets the achievable resolution of our scanning probes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA