Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 93(6): 1539-1545, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36042330

RESUMO

BACKGROUND: Peripheral intravenous analysis (PIVA) has been shown to be more sensitive than central venous pressure (CVP) for detecting hemorrhage and volume overload. We hypothesized that PIVA is superior to CVP for detecting right ventricular (RV) failure in a rat model of respiratory arrest. METHODS: Eight Wistar rats were studied in accordance with the ARRIVE guidelines. CVP, mean arterial pressure (MAP), and PIVA were recorded. Respiratory arrest was achieved with IV Rocuronium. PIVA utilizes Fourier transform to quantify the amplitude of the peripheral venous waveform, expressed as the "f1 amplitude". RV diameter was measured with transthoracic echocardiography. RESULTS: RV diameter increased from 0.34 to 0.54 cm during arrest, p = 0.001, and returned to 0.33 cm post arrest, p = 0.97. There was an increase in f1 amplitude from 0.07 to 0.38 mmHg, p = 0.01 and returned to 0.08 mmHg, p = 1.0. MAP decreased from 119 to 67 mmHg, p = 0.004 and returned to 136 mmHg, p = 0.50. There was no significant increase in CVP from 9.3 mmHg at baseline to 10.5 mmHg during respiratory arrest, p = 0.91, and recovery to 8.6 mmHg, p = 0.81. CONCLUSIONS: This study highlights the utility of PIVA to detect RV failure in small-caliber vessels, comparable to peripheral veins in the human pediatric population. IMPACT: Right ventricular failure remains a diagnostic challenge, particularly in pediatric patients with small vessel sizes limiting invasive intravascular monitor use. Intravenous analysis has shown promise in detecting hypovolemia and volume overload. Intravenous analysis successfully detects right ventricular failure in a rat respiratory arrest model. Intravenous analysis showed utility despite utilizing small peripheral venous access and therefore may be applicable to a pediatric population. Intravenous analysis may be helpful in differentiating various types of shock.


Assuntos
Insuficiência Cardíaca , Insuficiência Respiratória , Humanos , Criança , Animais , Ratos , Ratos Wistar , Pressão Venosa Central , Ecocardiografia , Infusões Intravenosas
2.
Anesth Analg ; 136(5): 941-948, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058731

RESUMO

BACKGROUND: Early detection and quantification of perioperative hemorrhage remains challenging. Peripheral intravenous waveform analysis (PIVA) is a novel method that uses a standard intravenous catheter to detect interval hemorrhage. We hypothesize that subclinical blood loss of 2% of the estimated blood volume (EBV) in a rat model of hemorrhage is associated with significant changes in PIVA. Secondarily, we will compare PIVA association with volume loss to other static, invasive, and dynamic markers. METHODS: Eleven male Sprague Dawley rats were anesthetized and mechanically ventilated. A total of 20% of the EBV was removed over ten 5 minute-intervals. The peripheral intravenous pressure waveform was continuously transduced via a 22-G angiocatheter in the saphenous vein and analyzed using MATLAB. Mean arterial pressure (MAP) and central venous pressure (CVP) were continuously monitored. Cardiac output (CO), right ventricular diameter (RVd), and left ventricular end-diastolic area (LVEDA) were evaluated via transthoracic echocardiogram using the short axis left ventricular view. Dynamic markers such as pulse pressure variation (PPV) were calculated from the arterial waveform. The primary outcome was change in the first fundamental frequency (F1) of the venous waveform, which was assessed using analysis of variance (ANOVA). Mean F1 at each blood loss interval was compared to the mean at the subsequent interval. Additionally, the strength of the association between blood loss and F1 and each other marker was quantified using the marginal R2 in a linear mixed-effects model. RESULTS: PIVA derived mean F1 decreased significantly after hemorrhage of only 2% of the EBV, from 0.17 to 0.11 mm Hg, P = .001, 95% confidence interval (CI) of difference in means 0.02 to 0.10, and decreased significantly from the prior hemorrhage interval at 4%, 6%, 8%, 10%, and 12%. Log F1 demonstrated a marginal R2 value of 0.57 (95% CI 0.40-0.73), followed by PPV 0.41 (0.28-0.56) and CO 0.39 (0.26-0.58). MAP, LVEDA, and systolic pressure variation displayed R2 values of 0.31, and the remaining predictors had R2 values ≤0.2. The difference in log F1 R2 was not significant when compared to PPV 0.16 (95% CI -0.07 to 0.38), CO 0.18 (-0.06 to 0.04), or MAP 0.25 (-0.01 to 0.49) but was significant for the remaining markers. CONCLUSIONS: The mean F1 amplitude of PIVA was significantly associated with subclinical blood loss and most strongly associated with blood volume among the markers considered. This study demonstrates feasibility of a minimally invasive, low-cost method for monitoring perioperative blood loss.


Assuntos
Pressão Arterial , Volume Sanguíneo , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Pressão Sanguínea , Hemorragia/diagnóstico , Hemodinâmica
3.
Biomed Microdevices ; 21(4): 85, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31451947

RESUMO

Advances in microfabrication allow for highly sensitive calorimeters with dramatically reduced volume, decreased response time and increased energy resolution. These calorimeters hold the potential for designs of ELISA platforms competitive with fluorescent and chemiluminescent technologies. We have developed a new assay platform using conventional ELISA reagents to produce a thermal signal quantifiable using calorimetry. Our optimized micromachined calorimeters have nL reaction volumes and a minimum detectable power of 375 pW/Hz1/2. We demonstrate rapid quantification in a model system of trastuzumab, a humanized monoclonal antibody used in the treatment of HER2 overexpressing breast cancers, in human serum using a HER2 peptide mimetic. Trastuzumab concentration and reaction time constant correlated well (R2 = 0.954) and can be used to determine trastuzumab concentrations. The limit of detection for the ThermometricELISA (TELISA) was 10 µg/ml trastuzumab in human serum. TELISA allows for a simple readout, reduction in assay time, sample and reagent volumes and has the potential to become a point of care multiplexed platform technology.


Assuntos
Calorimetria/instrumentação , Ensaio de Imunoadsorção Enzimática/instrumentação , Microtecnologia/instrumentação , Temperatura , Sequência de Aminoácidos , Desenho de Equipamento , Limite de Detecção , Peptidomiméticos/química , Trastuzumab/análise
4.
J Card Fail ; 24(8): 525-532, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29777760

RESUMO

BACKGROUND: To determine the feasibility of peripheral intravenous volume analysis (PIVA) of venous waveforms for assessing volume overload in patients admitted to the hospital with acute decompensated heart failure (ADHF). METHODS: Venous waveforms were captured from a peripheral intravenous catheter in subjects admitted for ADHF and healthy age-matched controls. Admission PIVA signal, brain natriuretic peptide, and chest radiographic measurements were related to the net volume removed during diuresis. RESULTS: ADHF patients had a significantly greater PIVA signal on admission compared with the control group (P = .0013, n = 18). At discharge, ADHF patients had a PIVA signal similar to the control group. PIVA signal, not brain natriuretic peptide or chest radiographic measures, accurately predicted the amount of volume removed during diuresis (R2 = 0.781, n = 14). PIVA signal at time of discharge greater than 0.20, demonstrated 83.3% 120-day readmission rate. CONCLUSIONS: This study demonstrates the feasibility of PIVA for assessment of volume overload in patients admitted to the hospital with ADHF.


Assuntos
Volume Sanguíneo/fisiologia , Insuficiência Cardíaca/fisiopatologia , Pacientes Internados , Volume Sistólico/fisiologia , Veias/fisiopatologia , Doença Aguda , Cateterismo Periférico , Diurese/fisiologia , Estudos de Viabilidade , Feminino , Insuficiência Cardíaca/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
5.
Biomed Microdevices ; 19(3): 50, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28560701

RESUMO

Point of care (POC) diagnostics represents one of the fastest growing health care technology segments. Developments in microfabrication have led to the development of highly-sensitive nanocalorimeters ideal for directly measuring heat generated in POC biosensors. Here we present a novel nano-calorimeter-based biosensor design with differential sensing to eliminate common mode noise and capillary microfluidic channels for sample delivery to the thermoelectric sensor. The calorimeter has a resolution of 1.4 ± 0.2 nJ/(Hz)1/2 utilizing a 27 junction bismuth/titanium thermopile, with a total Seebeck coefficient of 2160 µV/K. Sample is wicked to the calorimeter through a capillary channel making it suitable for monitoring blood obtained through a finger prick (<1 µL sample required). We demonstrate device performance in a model assay using catalase, achieving a threshold for hydrogen peroxide quantification of 50 µM. The potential for our device as a POC blood test for metabolic diseases is shown through the quantification of phenylalanine (Phe) in serum, an unmet necessary service in the management of Phenylketonuria (PKU). Pegylated phenylalanine ammonia-lyase (PEG-PAL) was utilized to react with Phe, but reliable detection was limited to <5 mM due to low enzymatic activity. The POC biosensor concept can be multiplexed and adapted to a large number of metabolic diseases utilizing different immobilized enzymes.


Assuntos
Técnicas Biossensoriais/instrumentação , Calorimetria/instrumentação , Nanotecnologia/instrumentação , Fenilcetonúrias/sangue , Sistemas Automatizados de Assistência Junto ao Leito , Desenho de Equipamento , Limite de Detecção , Fenilalanina/sangue , Fenilalanina Amônia-Liase/metabolismo , Fenilcetonúrias/diagnóstico
6.
Clin Auton Res ; 26(6): 423-432, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27491489

RESUMO

PURPOSE: Autonomic dysfunction has been reported in autism spectrum disorders (ASD). Less is known about autonomic function during sleep in ASD. The objective of this study is to provide insight into the autonomic cardiovascular control during different sleep stages in ASD. We hypothesized that patients with ASD have lower vagal and higher sympathetic modulation with elevated heart rate, as compared to typical developing children (TD). METHODS: We studied 21 children with ASD and 23 TD children during overnight polysomnography. Heart rate and spectral parameters were calculated for each vigilance stage during sleep. Data from the first four sleep cycles were used to avoid possible effects of different individual sleep lengths and sleep cycle structures. Linear regression models were applied to study the effects of age and diagnosis (ASD and TD). RESULTS: In both groups, HR decreased during non-REM sleep and increased during REM sleep. However, HR was significantly higher in stages N2, N3 and REM sleep in the ASD group. Children with ASD showed less high frequency (HF) modulation during N3 and REM sleep. LF/HF ratio was higher during REM. Heart rate decreases with age at the same level in ASD and in TD. We found an age effect in LF in REM different in ASD and TD. CONCLUSION: Our findings suggest possible deficits in vagal influence to the heart during sleep, especially during REM sleep. Children with ASD may have higher sympathetic dominance during sleep but rather due to decreased vagal influence.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Frequência Cardíaca , Sono , Envelhecimento , Sistema Nervoso Autônomo/fisiopatologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Polissonografia , Fases do Sono , Sono REM
7.
Circ Res ; 112(10): 1334-44, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23532597

RESUMO

RATIONALE: The Ca(2+) sensitivity of the myofilaments is increased in hypertrophic cardiomyopathy and other heart diseases and may contribute to a higher risk for sudden cardiac death. Ca(2+) sensitization increases susceptibility to reentrant ventricular tachycardia in animal models, but the underlying mechanism is unknown. OBJECTIVE: To investigate how myofilament Ca(2+) sensitization creates reentrant arrhythmia susceptibility. METHODS AND RESULTS: Using hypertrophic cardiomyopathy mouse models (troponinT-I79N) and a Ca(2+) sensitizing drug (EMD57033), here we identify focal energy deprivation as a direct consequence of myofilament Ca(2+) sensitization. To detect ATP depletion and thus energy deprivation, we measured accumulation of dephosphorylated Connexin 43 (Cx43) isoform P0 and AMP kinase activation by Western blotting and immunostaining. No differences were detected between groups at baseline, but regional accumulation of Connexin 43 isoform P0 occurred within minutes in all Ca(2+)-sensitized hearts, in vivo after isoproterenol challenge and in isolated hearts after rapid pacing. Lucifer yellow dye spread demonstrated reduced gap junctional coupling in areas with Connexin 43 isoform P0 accumulation. Optical mapping revealed that selectively the transverse conduction velocity was slowed and anisotropy increased. Myofilament Ca(2+) desensitization with blebbistatin prevented focal energy deprivation, transverse conduction velocity slowing, and the reentrant ventricular arrhythmias. CONCLUSIONS: Myofilament Ca(2+) sensitization rapidly leads to focal energy deprivation and reduced intercellular coupling during conditions that raise arrhythmia susceptibility. This is a novel proarrhythmic mechanism that can increase arrhythmia susceptibility in structurally normal hearts within minutes and may, therefore, contribute to sudden cardiac death in diseases with increased myofilament Ca(2+) sensitivity.


Assuntos
Arritmias Cardíacas/fisiopatologia , Cálcio/fisiologia , Cardiomiopatia Hipertrófica/fisiopatologia , Suscetibilidade a Doenças/fisiopatologia , Metabolismo Energético/fisiologia , Miofibrilas/fisiologia , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Cardiotônicos/farmacologia , Conexina 43/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/metabolismo , Eletrocardiografia , Metabolismo Energético/efeitos dos fármacos , Feminino , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/fisiologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Miofibrilas/efeitos dos fármacos , Quinolinas/farmacologia , Tiadiazinas/farmacologia
9.
Circ Res ; 111(2): 170-9, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22647877

RESUMO

RATIONALE: Ca binding to the troponin complex represents a major portion of cytosolic Ca buffering. Troponin mutations that increase myofilament Ca sensitivity are associated with familial hypertrophic cardiomyopathy and confer a high risk for sudden death. In mice, Ca sensitization causes ventricular arrhythmias, but the underlying mechanisms remain unclear. OBJECTIVE: To test the hypothesis that myofilament Ca sensitization increases cytosolic Ca buffering and to determine the resulting arrhythmogenic changes in Ca homeostasis in the intact mouse heart. METHODS AND RESULTS: Using cardiomyocytes isolated from mice expressing troponin T (TnT) mutants (TnT-I79N, TnT-F110I, TnT-R278C), we found that increasing myofilament Ca sensitivity produced a proportional increase in cytosolic Ca binding. The underlying cause was an increase in the cytosolic Ca binding affinity, whereas maximal Ca binding capacity was unchanged. The effect was sufficiently large to alter Ca handling in intact mouse hearts at physiological heart rates, resulting in increased end-diastolic [Ca] at fast pacing rates, and enhanced sarcoplasmic reticulum Ca content and release after pauses. Accordingly, action potential (AP) regulation was altered, with postpause action potential prolongation, afterdepolarizations, and triggered activity. Acute Ca sensitization with EMD 57033 mimicked the effects of Ca-sensitizing TnT mutants and produced pause-dependent ventricular ectopy and sustained ventricular tachycardia after acute myocardial infarction. CONCLUSIONS: Myofilament Ca sensitization increases cytosolic Ca binding affinity. A major proarrhythmic consequence is a pause-dependent potentiation of Ca release, action potential prolongation, and triggered activity. Increased cytosolic Ca binding represents a novel mechanism of pause-dependent arrhythmia that may be relevant for inherited and acquired cardiomyopathies.


Assuntos
Arritmias Cardíacas/metabolismo , Cálcio/fisiologia , Citosol/metabolismo , Homeostase/genética , Líquido Intracelular/metabolismo , Miofibrilas/metabolismo , Potenciais de Ação/genética , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Sinalização do Cálcio/genética , Citosol/patologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Miofibrilas/genética , Ligação Proteica/genética , Regulação para Cima/genética
10.
J Mol Cell Cardiol ; 60: 8-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23570978

RESUMO

Myocardial infarction (MI) is a major risk for ventricular arrhythmia. Pause-triggered ventricular arrhythmia can be caused by increased myofilament Ca binding due to sarcomeric mutations or Ca-sensitizing compounds. Myofilament Ca sensitivity is also increased after MI. Here we hypothesize that MI increases risk for pause-triggered ventricular arrhythmias, which can be prevented by myofilament Ca-desensitization and contractile uncoupling. To test this hypothesis, we generated a murine chronic MI model using male B6SJLF1/J mice (n=40) that underwent permanent ligation of the left anterior descending coronary artery. 4 weeks post MI, cardiac structure, function and myofilament Ca sensitivity were evaluated. Pause-dependent arrhythmia susceptibility was quantified in isolated hearts with pacing trains of increasing frequency, followed by a pause and an extra stimulus. Coronary ligation resulted in a mean infarct size of 39.6±5.7% LV and fractional shortening on echocardiography was reduced by 40% compared to non-infarcted controls. Myofilament Ca sensitivity was significantly increased in post MI hearts (pCa50: Control=5.66±0.03; MI=5.84±0.05; P<0.01). Exposure to the Ca desensitizer/contractile uncoupler blebbistatin (BLEB, 3 µM) reduced myofilament Ca sensitivity of MI hearts to that of control hearts and selectively reduced the frequency of post-pause ectopic beats (MI 0.12±0.04 vs MI+BLEB 0.01±0.005 PVC/pause; P=0.02). BLEB also reduced the incidence of ventricular tachycardia in chronic MI hearts from 59% to 10% (P<0.05). We conclude that chronic MI hearts exhibit increased myofilament Ca sensitivity and pause-triggered ventricular arrhythmias, which can be prevented by blebbistatin. Decreasing myofilament Ca sensitivity may be a strategy to reduce arrhythmia burden after MI.


Assuntos
Cálcio/metabolismo , Contração Miocárdica , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miofibrilas/metabolismo , Taquicardia Ventricular/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Masculino , Camundongos , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miofibrilas/patologia , Taquicardia Ventricular/patologia
11.
J Biol Chem ; 287(47): 39613-25, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23033485

RESUMO

The human Ether-à-go-go-related gene (hERG)-encoded K(+) current, I(Kr) is essential for cardiac repolarization but is also a source of cardiotoxicity because unintended hERG inhibition by diverse pharmaceuticals can cause arrhythmias and sudden cardiac death. We hypothesized that a small molecule that diminishes I(Kr) block by a known hERG antagonist would constitute a first step toward preventing hERG-related arrhythmias and facilitating drug discovery. Using a high-throughput assay, we screened a library of compounds for agents that increase the IC(70) of dofetilide, a well characterized hERG blocker. One compound, VU0405601, with the desired activity was further characterized. In isolated, Langendorff-perfused rabbit hearts, optical mapping revealed that dofetilide-induced arrhythmias were reduced after pretreatment with VU0405601. Patch clamp analysis in stable hERG-HEK cells showed effects on current amplitude, inactivation, and deactivation. VU0405601 increased the IC(50) of dofetilide from 38.7 to 76.3 nM. VU0405601 mitigates the effects of hERG blockers from the extracellular aspect primarily by reducing inactivation, whereas most clinically relevant hERG inhibitors act at an inner pore site. Structure-activity relationships surrounding VU0405601 identified a 3-pyridiyl and a naphthyridine ring system as key structural components important for preventing hERG inhibition by multiple inhibitors. These findings indicate that small molecules can be designed to reduce the sensitivity of hERG to inhibitors.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/tratamento farmacológico , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/metabolismo , Naftiridinas/química , Naftiridinas/farmacologia , Fenetilaminas/efeitos adversos , Bloqueadores dos Canais de Potássio/efeitos adversos , Piridinas/química , Piridinas/farmacologia , Sulfonamidas/efeitos adversos , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Relação Dose-Resposta a Droga , Descoberta de Drogas , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Proteínas Musculares/genética , Miocárdio/metabolismo , Miocárdio/patologia , Fenetilaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Coelhos , Relação Estrutura-Atividade , Sulfonamidas/farmacologia
12.
Biomed Eng Online ; 11: 39, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22812644

RESUMO

BACKGROUND: We present an easily implementable method for measuring Fura-2 fluorescence from isolated mouse hearts using a commercially available switching light source and CCD camera. After calibration, it provides a good estimate of intracellular [Ca2+] with both high spatial and temporal resolutions, permitting study of changes in dispersion of diastolic [Ca2+], Ca2+ transient dynamics, and conduction velocities in mouse hearts. In a proof-of-principle study, we imaged isolated Langendorff-perfused mouse hearts with reversible regional myocardial infarctions. METHODS: Isolated mouse hearts were perfused in the Landendorff-mode and loaded with Fura-2. Hearts were then paced rapidly and subjected to 15 minutes of regional ischemia by ligation of the left anterior descending coronary artery, following which the ligation was removed to allow reperfusion for 15 minutes. Fura-2 fluorescence was recorded at regular intervals using a high-speed CCD camera. The two wavelengths of excitation light were interleaved at a rate of 1 KHz with a computer controlled switching light source to illuminate the heart. RESULTS: Fura-2 produced consistent Ca2+ transients from different hearts. Ligating the coronary artery rapidly generated a well defined region with a dramatic rise in diastolic Ca2+ without a significant change in transient amplitude; Ca2+ handling normalized during reperfusion. Conduction velocity was reduced by around 50% during ischemia, and did not recover significantly when monitored for 15 minutes following reperfusion. CONCLUSIONS: Our method of imaging Fura-2 from isolated whole hearts is capable of detecting pathological changes in intracellular Ca2+ levels in cardiac tissue. The persistent change in the conduction velocities indicates that changes to tissue connectivity rather than altered intracellular Ca2+ handling may be underlying the electrical instabilities commonly seen in patients following a myocardial infarction.


Assuntos
Cálcio/metabolismo , Corantes Fluorescentes/metabolismo , Fura-2/metabolismo , Imagem Molecular/métodos , Miocárdio/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Arritmias Cardíacas/complicações , Espaço Intracelular/metabolismo , Camundongos , Miocárdio/patologia , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Espectrometria de Fluorescência
13.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990403

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmia syndrome caused by gene mutations that render RYR2 Ca release channels hyperactive, provoking spontaneous Ca release and delayed afterdepolarizations (DADs). What remains unknown is the cellular source of ventricular arrhythmia triggered by DADs: Purkinje cells in the conduction system or ventricular cardiomyocytes in the working myocardium. To answer this question, we used a genetic approach in mice to knock out cardiac calsequestrin either in Purkinje cells or in ventricular cardiomyocytes. Total loss of calsequestrin in the heart causes a severe CPVT phenotype in mice and humans. We found that loss of calsequestrin only in ventricular myocytes produced a full-blown CPVT phenotype, whereas mice with loss of calsequestrin only in Purkinje cells were comparable to WT mice. Subendocardial chemical ablation or restoration of calsequestrin expression in subendocardial cardiomyocytes neighboring Purkinje cells was sufficient to protect against catecholamine-induced arrhythmias. In silico modeling demonstrated that DADs in ventricular myocardium can trigger full action potentials in the Purkinje fiber, but not vice versa. Hence, ectopic beats in CPVT are likely generated at the Purkinje-myocardial junction via a heretofore unrecognized tissue mechanism, whereby DADs in the ventricular myocardium trigger full action potentials in adjacent Purkinje cells.


Assuntos
Calsequestrina/genética , Regulação da Expressão Gênica , Frequência Cardíaca/fisiologia , Células de Purkinje/patologia , RNA/genética , Taquicardia Ventricular/diagnóstico , Animais , Calsequestrina/biossíntese , Linhagem Celular , Modelos Animais de Doenças , Camundongos Knockout , Células de Purkinje/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/fisiopatologia
14.
J Clin Invest ; 118(12): 3893-903, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19033660

RESUMO

In human cardiomyopathy, anatomical abnormalities such as hypertrophy and fibrosis contribute to the risk of ventricular arrhythmias and sudden death. Here we have shown that increased myofilament Ca2+ sensitivity, also a common feature in both inherited and acquired human cardiomyopathies, created arrhythmia susceptibility in mice, even in the absence of anatomical abnormalities. In mice expressing troponin T mutants that cause hypertrophic cardiomyopathy in humans, the risk of developing ventricular tachycardia was directly proportional to the degree of Ca2+ sensitization caused by the troponin T mutation. Arrhythmia susceptibility was reproduced with the Ca2+-sensitizing agent EMD 57033 and prevented by myofilament Ca2+ desensitization with blebbistatin. Ca2+ sensitization markedly changed the shape of ventricular action potentials, resulting in shorter effective refractory periods, greater beat-to-beat variability of action potential durations, and increased dispersion of ventricular conduction velocities at fast heart rates. Together these effects created an arrhythmogenic substrate. Thus, myofilament Ca2+ sensitization represents a heretofore unrecognized arrhythmia mechanism. The protective effect of blebbistatin provides what we believe to be the first direct evidence that reduction of Ca2+ sensitivity in myofilaments is antiarrhythmic and might be beneficial to individuals with hypertrophic cardiomyopathy.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Cardiotônicos/efeitos adversos , Quinolinas/efeitos adversos , Taquicardia Ventricular/metabolismo , Tiadiazinas/efeitos adversos , Citoesqueleto de Actina/patologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cardiomiopatia Hipertrófica/induzido quimicamente , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Cardiotônicos/farmacologia , Gatos , Morte Súbita Cardíaca , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Fibrose/induzido quimicamente , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Fibrose/fisiopatologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Quinolinas/farmacologia , Fatores de Risco , Taquicardia Ventricular/induzido quimicamente , Taquicardia Ventricular/genética , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Tiadiazinas/farmacologia , Troponina T/genética , Troponina T/metabolismo
15.
Anal Chem ; 83(20): 7955-61, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21913688

RESUMO

We reduced the reaction volume in microfabricated suspended-membrane titration calorimeters to nanoliter droplets and improved the sensitivities to below a nanowatt with time constants of around 100 ms. The device performance was characterized using exothermic acid-base neutralizations and a detailed numerical model. The finite element based numerical model allowed us to determine the sensitivities within 1% and the temporal dynamics of the temperature rise in neutralization reactions as a function of droplet size. The model was used to determine the optimum calorimeter design (membrane size and thickness, junction area, and thermopile thickness) and sensitivities for sample volumes of 1 nL for silicon nitride and polymer membranes. We obtained a maximum sensitivity of 153 pW/(Hz)(1/2) for a 1 µm SiN membrane and 79 pW/(Hz)(1/2) for a 1 µm polymer membrane. The time constant of the calorimeter system was determined experimentally using a pulsed laser to increase the temperature of nanoliter sample volumes. For a 2.5 nanoliter sample volume, we experimentally determined a noise equivalent power of 500 pW/(Hz)(1/2) and a 1/e time constant of 110 ms for a modified commercially available infrared sensor with a thin-film thermopile. Furthermore, we demonstrated detection of 1.4 nJ reaction energies from injection of 25 pL of 1 mM HCl into a 2.5 nL droplet of 1 mM NaOH.


Assuntos
Calorimetria , Membranas Artificiais , Nanotecnologia , Polímeros/química , Compostos de Silício/química , Temperatura , Fatores de Tempo
16.
Semin Cardiothorac Vasc Anesth ; 25(1): 11-18, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32957831

RESUMO

BACKGROUND: Assessing intravascular hypovolemia due to hemorrhage remains a clinical challenge. Central venous pressure (CVP) remains a commonly used monitor in surgical and intensive care settings for evaluating blood loss, despite well-described pitfalls of static pressure measurements. The authors investigated an alternative to CVP, intravenous waveform analysis (IVA) as a method for detecting blood loss and examined its correlation with echocardiography. METHODS: Seven anesthetized, spontaneously breathing male Sprague Dawley rats with right internal jugular central venous and femoral arterial catheters underwent hemorrhage. Mean arterial pressure (MAP), heart rate, CVP, and IVA were assessed and recorded. Hemorrhage was performed until each rat had 25% estimated blood volume removed. IVA was obtained using fast Fourier transform and the amplitude of the fundamental frequency (f1) was measured. Transthoracic echocardiography was performed utilizing a parasternal short axis image of the left ventricle during hemorrhage. MAP, CVP, and IVA were compared with blood removed and correlated with left ventricular end diastolic area (LVEDA). RESULTS: All 7 rats underwent successful hemorrhage. MAP and f1 peak amplitude obtained by IVA showed significant changes with hemorrhage. MAP and f1 peak amplitude also significantly correlated with LVEDA during hemorrhage (R = 0.82 and 0.77, respectively). CVP did not significantly change with hemorrhage, and there was no significant correlation between CVP and LVEDA. CONCLUSIONS: In this study, f1 peak amplitude obtained by IVA was superior to CVP for detecting acute, massive hemorrhage. In addition, f1 peak amplitude correlated well with LVEDA on echocardiography. Translated clinically, IVA might provide a viable alternative to CVP for detecting hemorrhage.


Assuntos
Pressão Venosa Central/fisiologia , Ecocardiografia/métodos , Hemorragia/complicações , Hipovolemia/complicações , Hipovolemia/diagnóstico , Animais , Modelos Animais de Doenças , Hemorragia/fisiopatologia , Hipovolemia/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
17.
Biophys J ; 99(10): 3113-8, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21081057

RESUMO

We studied the transmembrane potential and magnetic fields from electrical activity at the apex of the isolated rabbit heart experimentally using optical mapping and superconducting quantum interference device microscopy, and theoretically using monodomain and bidomain models. The cardiac apex has a complex spiral fiber architecture that plays an important role in the development and propagation of action currents during stimulation at the apex. This spiral fiber orientation contains both radial electric currents that contribute to the electrocardiogram and electrically silent circular currents that cannot be detected by the electrocardiogram but are detectable by their magnetic field, B(z). In our experiments, the transmembrane potential, V(m), was first measured optically and then B(z) was measured with a superconducting quantum interference device microscope. Based on a simple model of the spiral structure of the apex, V(m) was expected to exhibit circular wave front patterns and B(z) to reflect the circular component of the action currents. Although the circular V(m) wave fronts were detected, the B(z) maps were not as simple as expected. However, we observed a pattern consistent with a tilted axis for the apex spiral fiber geometry. We were able to simulate similar patterns in both a monodomain model of a tilted stack of rings of dipole current and a bidomain model of a tilted stack of spiraled cardiac tissue that was stimulated at the apex. The fact that the spatial pattern of the magnetic data was more complex than the simple circles observed for V(m) suggests that the magnetic data contain information that cannot be found electrically.


Assuntos
Eletrofisiologia/métodos , Coração/fisiologia , Magnetismo , Potenciais da Membrana/fisiologia , Animais , Modelos Biológicos , Coelhos , Função Ventricular/fisiologia
18.
Biosensors (Basel) ; 10(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599750

RESUMO

Enzyme-catalyzed chemical reactions produce heat. We developed an enclosed, capillary-perfused nanocalorimeter platform for thermometric enzyme-linked immunosorbent assay (TELISA). We used catalase as enzymes to model the thermal characteristics of the micromachined calorimeter. Model-assisted signal analysis was used to calibrate the nanocalorimeter and to determine reagent diffusion, enzyme kinetics, and enzyme concentration. The model-simulated signal closely followed the experimental signal after selecting for the enzyme turnover rate (kcat) and the inactivation factor (InF), using a known label enzyme amount (Ea). Over four discrete runs (n = 4), the minimized model root mean square error (RMSE) returned 1.80 ± 0.54 fmol for the 1.5 fmol experiments, and 1.04 ± 0.37 fmol for the 1 fmol experiments. Determination of enzyme parameters through calibration is a necessary step to track changing enzyme kinetic characteristics and improves on previous methods to determine label enzyme amounts on the calorimeter platform. The results obtained using model-system signal analysis for calibration led to significantly improved nanocalorimeter platform performance.


Assuntos
Técnicas Biossensoriais , Calorimetria , Catalase/análise , Ensaio de Imunoadsorção Enzimática , Nanotecnologia , Termometria , Calibragem , Catalase/metabolismo , Difusão , Cinética
19.
Lab Chip ; 8(10): 1700-12, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18813394

RESUMO

Deciphering the signaling pathways that govern stimulation of naïve CD4+ T helper cells by antigen-presenting cells via formation of the immunological synapse is key to a fundamental understanding of the progression of successful adaptive immune response. The study of T cell-APC interactions in vitro is challenging, however, due to the difficulty of tracking individual, non-adherent cell pairs over time. Studying single cell dynamics over time reveals rare, but critical, signaling events that might be averaged out in bulk experiments, but these less common events are undoubtedly important for an integrated understanding of a cellular response to its microenvironment. We describe a novel application of microfluidic technology that overcomes many limitations of conventional cell culture and enables the study of hundreds of passively sequestered hematopoietic cells for extended periods of time. This microfluidic cell trap device consists of 440 18 micromx18 micromx10 microm PDMS, bucket-like structures opposing the direction of flow which serve as corrals for cells as they pass through the cell trap region. Cell viability analysis revealed that more than 70% of naïve CD4+ T cells (TN), held in place using only hydrodynamic forces, subsequently remain viable for 24 hours. Cytosolic calcium transients were successfully induced in TN cells following introduction of chemical, antibody, or cellular forms of stimulation. Statistical analysis of TN cells from a single stimulation experiment reveals the power of this platform to distinguish different calcium response patterns, an ability that might be utilized to characterize T cell signaling states in a given population. Finally, we investigate in real time contact- and non-contact-based interactions between primary T cells and dendritic cells, two main participants in the formation of the immunological synapse. Utilizing the microfluidic traps in a daisy-chain configuration allowed us to observe calcium transients in TN cells exposed only to media conditioned by secretions of lipopolysaccharide-matured dendritic cells, an event which is easily missed in conventional cell culture where large media-to-cell ratios dilute cellular products. Further investigation into this intercellular signaling event indicated that LPS-matured dendritic cells, in the absence of antigenic stimulation, secrete chemical signals that induce calcium transients in T(N) cells. While the stimulating factor(s) produced by the mature dendritic cells remains to be identified, this report illustrates the utility of these microfluidic cell traps for analyzing arrays of individual suspension cells over time and probing both contact-based and intercellular signaling events between one or more cell populations.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Microfluídica/instrumentação , Transdução de Sinais , Análise por Conglomerados
20.
Anal Chem ; 80(8): 2728-33, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18351750

RESUMO

A microfabricated titration calorimeter having nanowatt sensitivity is presented. The device is achieved by modifying a commercial, suspended-membrane, thin-film thermopile infrared sensor. Chemical reactions are studied by placing a 50.0 nL droplet of one reagent directly on the sensor and injecting nanoliter droplets of a second reagent through a micropipette by means of a pressure-driven droplet injector with 1% reliability in volume delivery. External thermal noise is minimized by a two-layer thermal shielding system. Evaporation is prevented by positioning the micropipette through a tiny hole in a cover glass, sealed by a drop of oil. The device is calibrated using two acid-base reactions: H2SO4 + HEPES buffer, and NaOH + HCl. The measured power sensitivity is 2.90(4) V/W, giving a detection limit of 22 nW. The 1/e time constant for a single injection is 1.1 s. The day-to-day power sensitivity is reproducible to approximately 2%. A computational model of the sensor reproduces the power sensitivity within 10% and the time constant within 20%. For a 50 nL sample and 0.8-1.5 nL titrant injection volumes, the heat uncertainty of 44 nJ corresponds to a 3sigma detection limit of 132 nJ, or the binding energy associated with 2.9 pM of IgG-protein A complex.


Assuntos
Calorimetria/instrumentação , Calorimetria/métodos , Nanotecnologia/métodos , Calibragem , Temperatura Alta , Raios Infravermelhos , Modelos Teóricos , Nanotecnologia/instrumentação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA