Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Environ Manage ; 354: 120411, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382438

RESUMO

Anthropogenic eutrophication remains a critical global issue, significantly impacting surface water quality. Numerous regions have implemented beneficial management practices to combat agricultural nonpoint pollution, often evaluating efficacy at the field scale, but not downstream. In this study, we conducted an extensive, 11-year (2010-2020), all-season, weekly monitoring program in a small, shallow, hypereutrophic lake and main tributary located in a cold climate, northern temperate zone, within a predominantly agricultural-forested mesoscale watershed. The monitoring took place before and after the implementation of field-scale agricultural nutrient mitigation measures in the catchment, allowing assessment of changes over time in the downstream tributary and lake. We analyzed long-term trends and temporal change points for nitrogen and phosphorus concentrations, aquatic trophic status, and nutrient stoichiometric ratios. The results revealed significant reductions in nitrogen and phosphorus concentrations, improved lake trophic status from hypereutrophic to eutrophic, and an increase in total nitrogen : total phosphorus ratios following the implementation of field-scale agricultural nutrient mitigation measures. Notably, both the lake and its main tributary exhibited significant temporal change points for these parameters. Our findings offer evidence of a relatively rapid, positive effect of the implementation of field-scale agricultural nutrient mitigation measures contributing to subsequent improvements in downstream water quality.


Assuntos
Lagos , Qualidade da Água , Monitoramento Ambiental , Nutrientes , Fósforo/análise , Nitrogênio/análise , Eutrofização , China
2.
Environ Res ; 236(Pt 1): 116654, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487921

RESUMO

Phosphorus (P) in lake sediments is stored within diverse forms, often associated with metals, minerals, and organic matter. Sediment P can be remobilized to the water column, but the environmental conditions influencing the P retention-release balance depend upon the sediment chemistry and forms of P present. Sequential fractionation approaches can be used to help understand forms of P present in the sediments, and their vulnerability to release. We assessed P composition in surficial sediments (as an assemblage of six P-fractions) and its relationship with watershed, and lake-specific explanatory variables from 236 lakes across Canada. Sediment P composition varied widely across the 12 sampled Canadian ecozones. The dominant P-fractions were the residual-P and the labile organic P, while the loosely bound P corresponded to the smallest proportion of sediment TP. Notable contrasts in sediment P composition were apparent across select regions - with the most significant differences between sediment P in lakes from the mid-West Canada region (Prairies and Boreal Plains ecozones) and both Eastern coastal (Atlantic Maritime and Atlantic Highlands) and Western coastal (Pacific Maritime) ecozones. The ecozone attributes most critical to sediment P speciation across Canadian lakes were related to soil types in the watershed (e.g., podzols, chernozems, and Luvisols) and the chemical composition of lake water and sediments, such as dissolved Ca in lake water, bulk sedimentary Ca, Al, and Fe, dissolved SO4 in lake water, lake pH, and salinity. Understanding predictors of the forms of P stored in surficial sediments helps advance our knowledge of in-lake P retention and remobilization processes across the millions of unstudied lakes and can help our understanding of controls on internal P loading.

3.
Proc Natl Acad Sci U S A ; 116(20): 9814-9819, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036633

RESUMO

Nitrogen pollution and global eutrophication are predicted to increase nitrous oxide (N2O) emissions from freshwater ecosystems. Surface waters within agricultural landscapes experience the full impact of these pressures and can contribute substantially to total landscape N2O emissions. However, N2O measurements to date have focused on flowing waters. Small artificial waterbodies remain greatly understudied in the context of agricultural N2O emissions. This study provides a regional analysis of N2O measurements in small (<0.01 km2) artificial reservoirs, of which an estimated 16 million exist globally. We show that 67% of reservoirs were N2O sinks (-12 to -2 µmol N2O⋅m-2⋅d-1) in Canada's largest agricultural area, despite their highly eutrophic status [99 ± 289 µg⋅L-1 chlorophyll-a (Chl-a)]. Generalized additive models indicated that in situ N2O concentrations were strongly and nonlinearly related to stratification strength and dissolved inorganic nitrogen content, with the lowest N2O levels under conditions of strong water column stability and high algal biomass. Predicted fluxes from previously published models based on lakes, reservoirs, and agricultural waters overestimated measured fluxes on average by 7- to 33-fold, challenging the widely held view that eutrophic N-enriched waters are sources of N2O.


Assuntos
Fazendas , Gases de Efeito Estufa/análise , Ciclo do Nitrogênio , Óxido Nitroso/análise , Lagoas/química , Saskatchewan
4.
J Environ Manage ; 231: 1117-1126, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602236

RESUMO

Water quality is increasingly at risk due to nutrient pollution entering river systems from cities, industrial zones and agricultural areas. Agricultural activities are typically the largest non-point source of water pollution. The dynamics of agricultural impacts on water quality are complex and stem from the decisions and activities of multiple stakeholders, often with diverse business plans, values, and attitudes towards practices that can improve water quality. This study proposes a framework to understand and incorporate stakeholders' viewpoints into water quality modeling and management. The framework was applied to the Qu'Appelle River Basin, Saskatchewan, Canada. Q-methodology was used to understand viewpoints of stakeholders, namely agricultural producers (annual croppers, cattle producers, mixed farmers) and cottage owners, regarding a range of agricultural Beneficial Management Practices (BMPs) that can improve water quality, and to identify their preferred BMPs. A System Dynamics (SD) approach was employed to develop a transparent and user-friendly water quality model, SD-Qu'Appelle, to simulate nutrient loads in the region before and after implementation of stakeholder identified BMPs. The SD-Qu'Appelle was used in real-time engagement of stakeholders in model simulations to demonstrate and explore the potential effects of different BMPs in mitigating water pollution. Stakeholder perspectives were explored to understand the functionality and value of the SD-Qu'Appelle, preferred policies and potential barriers to BMP implementation on their land. Results show that although there are differences between viewpoints of stakeholders, they identified wetland restoration/retention, flow and erosion control, and relocation of corrals near creeks to sites more distant from waterways as the most effective BMPs for improving water quality. Economics was identified as a primary factor that causes agricultural producers to either accept or refuse the implementation of BMPs. Agricultural producers believe that incentives rather than regulations are the best policies for increasing the adoption of BMPs. Overall, stakeholders indicated the SD-Qu'Appelle had considerable value for water quality management and provided a set of recommendations to improve the model.


Assuntos
Rios , Qualidade da Água , Agricultura , Animais , Canadá , Bovinos , Poluição da Água
5.
Ecol Lett ; 20(1): 98-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889953

RESUMO

Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer 'growing seasons'. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.


Assuntos
Ecossistema , Camada de Gelo , Lagos , Plâncton/fisiologia , Estações do Ano
6.
J Environ Qual ; 46(1): 96-104, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28177420

RESUMO

There are few beneficial management practices (BMPs) with demonstrated efficacy in snowmelt-dominated regions. Small reservoirs are a BMP that can help mitigate flooding and reduce sediment transport, while reducing export of dissolved nutrients. To understand controls on nitrate removal and assess how this ecosystem service can be optimized, denitrification activity was measured in reservoirs and stream pools of the Tobacco Creek Model Watershed (Manitoba, Canada) via the chloramphenicol-amended acetylene block technique. Denitrification activity was positively correlated with nitrate and sediment organic carbon (SOC), and negatively correlated with sediment particle size and pH. Reservoirs exhibited higher denitrification activity than stream pools and were associated with higher levels of SOC, higher nitrate in early summer, and lower concentrations of dissolved oxygen. Nitrate was added to a set of samples to test for nitrate saturation, an indicator of poor ecological status, where nitrate concentrations exceed the denitrification capacity of microbes. Forty-nine percent of measurements demonstrated nitrate saturation, indicative of the need for additional remediation activity. Findings from this research suggest this BMP has higher capacity for nitrogen removal than stream pools because of higher denitrification rates and a higher apparent threshold for nitrate saturation, coupled with increased residence times. Results also inform the construction of additional reservoirs, which have been identified as a priority BMP in this region. Siting reservoirs in areas where conditions contribute to buildup of fine sediments and planting riparian vegetation to foster high organic C availability may help optimize denitrification, although tradeoffs in terms of other ecosystem services must be considered.


Assuntos
Desnitrificação , Ecossistema , Canadá , Sedimentos Geológicos , Nitratos , Nitrogênio
7.
Environ Sci Technol ; 49(18): 10984-92, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26266956

RESUMO

Taste and odor problems can impede public trust in drinking water and impose major costs on water utilities. The ability to forecast taste and odor events in source waters, in advance, is shown for the first time in this paper. This could allow water utilities to adapt treatment, and where effective treatment is not available, consumers could be warned. A unique 24-year time series, from an important drinking water reservoir in Saskatchewan, Canada, is used to develop forecasting models of odor using chlorophyll a, turbidity, total phosphorus, temperature, and the following odor producing algae taxa: Anabaena spp., Aphanizemenon spp., Oscillatoria spp., Chlorophyta, Cyclotella spp., and Asterionella spp. We demonstrate, using linear regression and random forest models, that odor events can be forecast at 0-26 week time lags, and that the models are able to capture a significant increase in threshold odor number in the mid-1990 s. Models with a fortnight time-lag show a high predictive capacity (R(2) = 0.71 for random forest; 0.52 for linear regression). Predictive skill declines for time lags from 0 to 15 weeks, then increases again, to R(2) values of 0.61 (random forest) and 0.48 (linear regression) at a 26-week lag. The random forest model is also able to provide accurate forecasting of TON levels requiring treatment 12 weeks in advance-93% true positive rate with a 0% false positive rate. Results of the random forest model demonstrate that phytoplankton taxonomic data outperform chlorophyll a in terms of predictive importance.


Assuntos
Água Potável/química , Odorantes/análise , Olfato , Paladar , Abastecimento de Água , Saskatchewan , Fatores de Tempo
8.
Ambio ; 44(1): 7-15, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25515021

RESUMO

Globally, greenhouse gas budgets are dominated by natural sources, and aquatic ecosystems are a prominent source of methane (CH(4)) to the atmosphere. Beaver (Castor canadensis and Castor fiber) populations have experienced human-driven change, and CH(4) emissions associated with their habitat remain uncertain. This study reports the effect of near extinction and recovery of beavers globally on aquatic CH4 emissions and habitat. Resurgence of native beaver populations and their introduction in other regions accounts for emission of 0.18-0.80 Tg CH(4) year(-1) (year 2000). This flux is approximately 200 times larger than emissions from the same systems (ponds and flowing waters that became ponds) circa 1900. Beaver population recovery was estimated to have led to the creation of 9500-42 000 km(2) of ponded water, and increased riparian interface length of >200 000 km. Continued range expansion and population growth in South America and Europe could further increase CH(4) emissions.


Assuntos
Poluentes Atmosféricos/metabolismo , Metano/metabolismo , Roedores/fisiologia , América , Animais , Ásia , Monitoramento Ambiental , Europa (Continente) , Crescimento Demográfico , Roedores/metabolismo
9.
Sci Total Environ ; 924: 171493, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458448

RESUMO

Sediments can act as a source or sink of phosphorus (P) for the water column of lakes. In iron (Fe)-rich softwater lakes, redox processes are important contributors to sediment P flux. However, the contribution of redox processes to P flux in hardwater lakes, with high pH and high concentrations of redox-insensitive calcium (Ca) is unknown. Intact sediment cores, collected in different seasons (summer or fall) from a chain of eutrophic hardwater lakes in southeastern Saskatchewan, Canada, were used to quantify sediment P fluxes in laboratory incubations under hypoxic or oxic conditions at temperatures consistent with the season of sample collection. Geochemical analyses determined concentrations of sediment total (TP) and organic P (TPo), organic matter (OM), total Ca and magnesium, and total and extractable manganese, Fe and aluminum. Sediment P pools were determined using sequential fractionation and solution 31P nuclear magnetic resonance spectroscopy. Sediment P fluxes were significantly higher in sediment cores incubated under hypoxic conditions (-24.4 to 28.5 mg P m-2 d-1) than oxic conditions (-60.3 to 14.2 mg P m-2 d-1). There were significant seasonal and lake differences for TP, TPo and cation concentrations, with Ca the dominant cation in all but one lake. Phosphate bound in the redox-sensitive pool was the only sediment P fraction that significantly differed among the lakes (0.10 to 0.18 mg P g-1 d.w.; 9 to 16 % of TP), with an inverse relationship to sediment P flux. Principal component analysis suggests that high concentrations of internally-generated TPo forms and OM in surface sediments play a key role in internal P loading in these lakes. However, sediment Ca appears to have an overriding effect on sediment P, partially masking the impact of redox control on internal P loading in these hardwater prairie lakes.

10.
Chemosphere ; 334: 138991, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37209843

RESUMO

Microbial communities are an important component of freshwater biodiversity that is threatened by anthropogenic impacts. Wastewater discharges pose a particular concern by being major sources of anthropogenic contaminants and microorganisms that may influence the composition of natural microbial communities. Nevertheless, the effects of wastewater treatment plant (WWTP) effluents on microbial communities remain largely unexplored. In this study, the effects of wastewater discharges on microbial communities from five different WWTPs in Southern Saskatchewan were investigated using rRNA gene metabarcoding. In parallel, nutrient levels and the presence of environmentally relevant organic pollutants were analyzed. Higher nutrient loads and pollutant concentrations resulted in significant changes in microbial community composition. The greatest changes were observed in Wascana Creek (Regina), which was found to be heavily polluted by wastewater discharges. Several taxa occurred in greater relative abundance in the wastewater-influenced stream segments, indicating anthropogenic pollution and eutrophication, especially taxa belonging to Proteobacteria, Bacteroidota, and Chlorophyta. Strong decreases were measured within the taxa Ciliphora, Diatomea, Dinoflagellata, Nematozoa, Ochrophyta, Protalveolata, and Rotifera. Across all sample types, a significant decline in sulfur bacteria was measured, implying changes in functional biodiversity. In addition, downstream of the Regina WWTP, an increase in cyanotoxins was detected which was correlated with a significant change in cyanobacterial community composition. Overall, these data suggest a causal relationship between anthropogenic pollution and changes in microbial communities, possibly reflecting an impairment of ecosystem health.


Assuntos
Microbiota , Águas Residuárias , Pradaria , Canadá , Biodiversidade , Bactérias/genética
12.
J Environ Qual ; 51(5): 990-1002, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35819079

RESUMO

Within the north-temperate zone, winters can be long and are associated with conditions of low temperature and potential for sediment freezing. There are critical gaps in our knowledge of biogeochemical cycling during winter and inadequate knowledge of how warming winters and changing snowpack might affect biogeochemistry. Here, we assessed the impacts of sediment freeze-thaw cycling and nitrate amendment on denitrification rates in the littoral fringe of four urban wetlands. We demonstrate the potential for experimental sediment freezing to suppress denitrification, although freezing effects were not observed at all sites. Multiple freeze-thaw cycles were assessed, and, although subsequent cycles may affect denitrification, the first instance of our experimental freezing seems the most critical. Although this work demonstrates potential sensitivity of wetland denitrification rates to changing winter conditions, we note nitrate availability has a larger impact upon denitrification rates. This suggests nitrification rates and changing nitrate loads may be more important determinants of nitrate retention than sediment freeze-thaw history. Although there has been great interest in hot spots and moments for biogeochemical cycling, we suggest there is similar need to understand cold spots and moments, as evidenced here. This is particularly important where cold moments may correspond with critical periods of nitrate transport, such as snowmelt.


Assuntos
Desnitrificação , Áreas Alagadas , Congelamento , Sedimentos Geológicos , Nitratos/análise , Nitrogênio
13.
Environ Sci Process Impacts ; 24(8): 1212-1227, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35833582

RESUMO

Cyanobacterial blooms present challenges for water treatment, especially in regions like the Canadian prairies where poor water quality intensifies water treatment issues. Buoyant cyanobacteria that resist sedimentation present a challenge as water treatment operators attempt to balance pre-treatment and toxic disinfection by-products. Here, we used microscopy to identify and describe the succession of cyanobacterial species in Buffalo Pound Lake, a key drinking water supply. We used indicator species analysis to identify temporal grouping structures throughout two sampling seasons from May to October 2018 and 2019. Our findings highlight two key cyanobacterial bloom phases - a mid-summer diazotrophic bloom of Dolichospermum spp. and an autumn Planktothrix agardhii bloom. Dolichospermum crassa and Woronichinia compacta served as indicators of the mid-summer and autumn bloom phases, respectively. Different cyanobacterial metabolites were associated with the distinct bloom phases in both years: toxic microcystins were associated with the mid-summer Dolichospermum bloom and some newly monitored cyanopeptides (anabaenopeptin A and B) with the autumn Planktothrix bloom. Despite forming a significant proportion of the autumn phytoplankton biomass (>60%), the Planktothrix bloom had previously not been detected by sensor or laboratory-derived chlorophyll-a. Our results demonstrate the power of targeted taxonomic identification of key species as a tool for managers of bloom-prone systems. Moreover, we describe an autumn Planktothrix agardhii bloom that has the potential to disrupt water treatment due to its evasion of detection. Our findings highlight the importance of identifying this autumn bloom given the expectation that warmer temperatures and a longer ice-free season will become the norm.


Assuntos
Cianobactérias , Lagos , Canadá , Eutrofização , Lagos/química , Fitoplâncton , Planktothrix
14.
Toxins (Basel) ; 14(4)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448860

RESUMO

The neurotoxic alkaloid ß-N-methyl-amino-l-alanine (BMAA) and related isomers, including N-(2-aminoethyl glycine) (AEG), ß-amino-N-methyl alanine (BAMA), and 2,4-diaminobutyric acid (DAB), have been reported previously in cyanobacterial samples. However, there are conflicting reports regarding their occurrence in surface waters. In this study, we evaluated the impact of amending lake water samples with trichloroacetic acid (0.1 M TCA) on the detection of BMAA isomers, compared with pre-existing protocols. A sensitive instrumental method was enlisted for the survey, with limits of detection in the range of 5−10 ng L−1. Higher detection rates and significantly greater levels (paired Wilcoxon's signed-rank tests, p < 0.001) of BMAA isomers were observed in TCA-amended samples (method B) compared to samples without TCA (method A). The overall range of B/A ratios was 0.67−8.25 for AEG (up to +725%) and 0.69−15.5 for DAB (up to +1450%), with absolute concentration increases in TCA-amended samples of up to +15,000 ng L−1 for AEG and +650 ng L−1 for DAB. We also documented the trends in the occurrence of BMAA isomers for a large breadth of field-collected lakes from Brazil, Canada, France, Mexico, and the United Kingdom. Data gathered during this overarching campaign (overall, n = 390 within 45 lake sampling sites) indicated frequent detections of AEG and DAB isomers, with detection rates of 30% and 43% and maximum levels of 19,000 ng L−1 and 1100 ng L−1, respectively. In contrast, BAMA was found in less than 8% of the water samples, and BMAA was not found in any sample. These results support the analyses of free-living cyanobacteria, wherein BMAA was often reported at concentrations of 2−4 orders of magnitude lower than AEG and DAB. Seasonal measurements conducted at two bloom-impacted lakes indicated limited correlations of BMAA isomers with total microcystins or chlorophyll-a, which deserves further investigation.


Assuntos
Diamino Aminoácidos , Cianobactérias , Alanina , Diamino Aminoácidos/análise , Brasil , Lagos/microbiologia , México , Neurotoxinas/análise , Água/análise
15.
Environ Sci Technol ; 45(11): 4682-8, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21534582

RESUMO

Global models have indicated agriculturally impacted rivers and streams may be important sources of the greenhouse gas nitrous oxide (N(2)O). However, there is significant uncertainty in N(2)O budgets. Isotopic characterization can be used to help constrain N(2)O budgets. We present the first published measurements of the isotopic character of N(2)O emitted from low (2-4) order streams. Isotopic character of N(2)O varied seasonally, among streams, and over diel periods. On an annual basis, δ(18)O of emitted N(2)O (+47.4 to +51.4‰; relative to VSMOW) was higher than previously reported for larger rivers, but δ(15)N of emitted N(2)O (-16.2 to +2.4‰ among streams; relative to atmospheric N(2)) was similar to that of past studies. On an annual basis, all streams emitted N(2)O with lower δ(15)N than tropospheric N(2)O. Given these streams have elevated nitrate concentrations which are associated with enhanced N(2)O fluxes, this supports the hypothesis that streams are contributing to the accumulation of (15)N-depleted N(2)O in the troposphere.


Assuntos
Óxido Nitroso/química , Rios/química , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise
16.
Environ Health Insights ; 15: 11786302211014401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017178

RESUMO

Globally, harmful algal blooms (HABs) are on the rise, as is evidence of their toxicity. The impacts associated with blooms, however, vary across Nation states, as do the strategies and protocols to assess, monitor, and manage their occurrence. In Canada, water quality guidelines are standardized nationally, but the management strategies for HABs are not. Here, we explore current strategies to understand how to better communicate risks associated with HABs to the public. Our team conducted an environmental scan on provincial and territorial government agency protocols around HABs. Results suggest that there are variations in the monitoring, managing, and communicating of risk to the public: British Columbia, Manitoba, New Brunswick, and Quebec have well-established inter-agency protocols, and most provinces report following federal guidelines for water quality. Notably, 3 northern territories have no HABs monitoring or management protocols in place. More populous provinces use a variety of information venues (websites, social media, on site postings, and radio) to communicate risks associated with HABs, whereas others' communications are limited. To induce more collaboration on HABs monitoring and management and reduce the associated risks, creating a coherent system with consistent messaging and inter-agency communication is suggested.

17.
Data Brief ; 38: 107405, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34621932

RESUMO

Phosphorus (P) runoff from agricultural land plays a critical role in downstream water quality. This article summarizes P and sediment runoff data for both snowmelt and rainfall runoff from 30 arable fields in the Canadian provinces of Saskatchewan, Manitoba and Ontario. The data were collected from 216 site-years of field experiments, with climates ranging from semi-arid to humid and a wide range of field management practices. In the article, mean annual and seasonal (in terms of snowmelt and rain) precipitation inputs, runoff depths, and P and sediment concentrations and loads are presented, along with ranges of yearly values. In addition, information of field management and soil characteristics (e.g. soil type and soil Olsen P) is also presented for each field. The data have potential to be reused for national and international cross-region comparisons of P and sediment losses, constructing and validating decision-support models and tools for assessing and managing P losses in both snowmelt and rainfall runoff, and informing beneficial management practices to improve agricultural water quality. Interpretation of the data is found in "Phosphorus runoff from Canadian agricultural land: A cross-region synthesis of edge-of-field results" [1].

18.
PLoS One ; 14(11): e0224864, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31697768

RESUMO

With changes in ice cover duration, nutrient loading, and anoxia risk, it is important to understand the mechanisms that control nitrogen cycling and oxygen depletion in lakes through winter. Current understanding is largely limited to description of changes in chemistry, with few measurements of the processes driving winter changes, how they differ across lakes, and how they are impacted by under-ice conditions. Nitrification is a process which consumes oxygen and ammonium (NH4+), and supplies nitrate (NO3-). To date, nitrification has been measured under ice cover in only two lakes globally. Here, we used 15NH4+ enrichment to measure rates of pelagic nitrification in thirteen water bodies in two ecozones. Our work demonstrates ecologically important rates of nitrification can occur despite low water temperatures, impacting NH4+, NO3- and, most importantly, oxygen concentrations. However, high rates are not the norm. When, where and why is nitrification important in winter? We found that nitrification rates were highest in a eutrophic lake chain downstream of a wastewater treatment effluent (mean: 226.5 µg N L-1 d-1), and in a semi-saline prairie lake (110.0 µg N L-1 d-1). In the boreal shield, a eutrophic lake had nitrification rates exceeding those of an oligotrophic lake by 6-fold. Supplementing our results with literature data we found NH4+ concentrations were the strongest predictor of nitrification rates across lentic ecosystems in winter. Higher nitrification rates were associated with higher concentrations of NH4+, NO3- and nitrous oxide (N2O). While more work is required to understand the switch between high and low nitrification rates and strengthen our understanding of winter nitrogen cycling, this work demonstrates that high nitrification rates can occur in winter.


Assuntos
Camada de Gelo , Lagos , Nitrificação , Estações do Ano , Compostos de Amônio/análise , Canadá , Geografia , Modelos Lineares , Nitratos/análise , Ciclo do Nitrogênio , Óxido Nitroso/análise , Análise de Componente Principal
19.
J Environ Qual ; 48(4): 803-812, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31589694

RESUMO

Managing P export from agricultural land is critical to address freshwater eutrophication. However, soil P management, and options to draw down soil P have received little attention in snowmelt-dominated regions because of limited interaction between soil and snowmelt. Here, we assessed the impacts of soil P drawdown (reducing fertilizer P inputs combined with harvest removal) on soil Olsen P dynamics, runoff P concentrations, and crop yields from 1997 to 2014 in paired fields in Manitoba, Canada. We observed that Olsen P concentrations in the 0- to 5-cm soil layer were negatively correlated with the cumulative P depletion and declined rapidly at the onset of the drawdown practice (3.1 to 5.4 mg kg yr during 2007-2010). In both snowmelt runoff and rainfall runoff, concentrations of total dissolved P (TDP) were positively correlated with the concentrations of soil Olsen P. Soil P drawdown to low to moderate fertility levels significantly decreased mean annual flow-weighted TDP concentrations in snowmelt runoff from 0.60 to 0.30 mg L in the field with high initial soil P and from 1.17 to 0.42 mg L in the field with very high initial soil P. Declines in TDP concentration in rainfall runoff were greater. Critically, yields of wheat ( spp.) and canola ( L.) were not affected by soil P depletion. In conclusion, we demonstrate that relatively rapid reductions in P loads are achievable at the field scale via managing P inputs and soil P pools, highlighting a management opportunity that can maintain food security while improving water security in cold regions.


Assuntos
Fósforo , Solo , Canadá , Chuva , Movimentos da Água , Qualidade da Água
20.
Sci Total Environ ; 652: 75-84, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30359804

RESUMO

The heterogeneity of dissolved organic matter (DOM) in natural and human impacted waters and the variety of drinking water treatment processes employed has made a mechanistic understanding of disinfection byproduct (DBP) formation challenging. In this study, we examined the formation of the regulated DBPs (Trichloromethanes, THM, and Haloacetic acids, HAA) during full-scale water treatment operations both with prechlorination treatment (normal operations for the drinking water plant) and without (altered operations); followed by coagulation, flocculation, filtration, and chlorination. The source water DOM concentration ranged 6.4 to 7.3 mg-C/L. DOM composition was moderately humic and degraded with a mix of microbial- and terrestrial-like characteristics. Removal of raw water prechlorination caused an average reduction in total THM and HAA concentrations of 52.7% and 40.0%, respectively, with the greater reduction noted for chlorinated-DBPs rather than brominated-DBPs. Prechlorination treatment resulted in a higher relative production of Cl3CH and BrCl2CH associated with aromatic, humic, and terrestrial-like DOM. Without prechlorination, the DBP pool had higher proportions of brominated-DBPs (Br3CH, Br2ClCH, Br2CHCOOH, BrClCHCOOH, and BrCH2COOH) associated with microbial-like, processed humic-like, and protein-like DOM. These observed patterns could not be explained by chloride demand and DOM concentration, indicating that DOM composition played an important role in DBP formation.


Assuntos
Desinfetantes/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desinfecção , Água Potável/química , Floculação , Trialometanos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA