Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Development ; 143(15): 2780-90, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27338615

RESUMO

Fertilization in flowering plants requires a complex series of coordinated events involving interaction between the male and female gametophyte. We report here molecular data on one of the key events underpinning this process - the death of the receptive synergid cell and the coincident bursting of the pollen tube inside the ovule to release the sperm. We show that two REM transcription factors, VALKYRIE (VAL) and VERDANDI (VDD), both targets of the ovule identity MADS-box complex SEEDSTICK-SEPALLATA3, interact to control the death of the receptive synergid cell. In vdd-1/+ mutants and VAL_RNAi lines, we find that GAMETOPHYTIC FACTOR 2 (GFA2), which is required for synergid degeneration, is downregulated, whereas expression of FERONIA (FER) and MYB98, which are necessary for pollen tube attraction and perception, remain unaffected. We also demonstrate that the vdd-1/+ phenotype can be rescued by expressing VDD or GFA2 in the synergid cells. Taken together, our findings reveal that the death of the receptive synergid cell is essential for maintenance of the following generations, and that a complex comprising VDD and VAL regulates this event.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Células Germinativas Vegetais/metabolismo , Tubo Polínico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Development ; 139(3): 498-502, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22190635

RESUMO

In contrast to animals, plant germ cells are formed along with accessory cells in specialized haploid generations, termed gametophytes. The female gametophyte of flowering plants consists of four different cell types, which exert distinct functions in the reproductive process. For successful fertilization, the development of the four cell types has to be tightly coordinated; however, the underlying mechanisms are not yet understood. We have previously isolated the lachesis (lis) mutant, which forms supernumerary gametes at the expense of adjacent accessory cells. LIS codes for the Arabidopsis homolog of the pre-mRNA splicing factor PRP4 and shows a dynamic expression pattern in the maturing female gametophyte. Here, we used LIS as a molecular tool to study cell-cell communication in the female gametophyte. We show that reducing LIS transcript amounts specifically in the egg cell, affects the development of all female gametophytic cells, indicating that cell differentiation in the female gametophyte is orchestrated by the egg cell. Among the defects observed is the failure of homotypic nuclei fusion in the central cell and, as a consequence, a block in endosperm formation. LIS-mediated egg cell signaling, thus, provides a safeguard mechanism that prevents the formation of nurturing tissue in the absence of a functional egg cell.


Assuntos
Proteínas de Arabidopsis/fisiologia , Mutação , Óvulo Vegetal/crescimento & desenvolvimento , Ribonucleoproteína Nuclear Pequena U4-U6/fisiologia , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Comunicação Celular/genética , Diferenciação Celular , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Ribonucleoproteína Nuclear Pequena U4-U6/genética
3.
Proc Natl Acad Sci U S A ; 107(51): 22350-5, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21135240

RESUMO

Plant germ cells develop in specialized haploid structures, termed gametophytes. The female gametophyte patterns of flowering plants are diverse, with often unknown adaptive value. Here we present the Arabidopsis fiona mutant, which forms a female gametophyte that is structurally and functionally reminiscent of a phylogenetic distant female gametophyte. The respective changes include a modified reproductive behavior of one of the female germ cells (central cell) and an extended lifespan of three adjacent accessory cells (antipodals). FIONA encodes the cysteinyl t-RNA synthetase SYCO ARATH (SYCO), which is expressed and required in the central cell but not in the antipodals, suggesting that antipodal lifespan is controlled by the adjacent gamete. SYCO localizes to the mitochondria, and ultrastructural analysis of mutant central cells revealed that the protein is necessary for mitochondrial cristae integrity. Furthermore, a dominant ATP/ADP translocator caused mitochondrial cristae degeneration and extended antipodal lifespan when expressed in the central cell of wild-type plants. Notably, this construct did not affect antipodal lifespan when expressed in antipodals. Our results thus identify an unexpected noncell autonomous role for mitochondria in the regulation of cellular lifespan and provide a basis for the coordinated development of gametic and nongametic cells.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Senescência Celular/fisiologia , Células Germinativas Vegetais/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Aminoacil-tRNA Sintetases/genética , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Células Germinativas Vegetais/citologia , Mitocôndrias/genética , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas Mitocondriais/genética , Mutação
4.
PLoS Biol ; 5(3): e47, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17326723

RESUMO

In flowering plants, the egg and sperm cells form within haploid gametophytes. The female gametophyte of Arabidopsis consists of two gametic cells, the egg cell and the central cell, which are flanked by five accessory cells. Both gametic and accessory cells are vital for fertilization; however, the mechanisms that underlie the formation of accessory versus gametic cell fate are unknown. In a screen for regulators of egg cell fate, we isolated the lachesis (lis) mutant which forms supernumerary egg cells. In lis mutants, accessory cells differentiate gametic cell fate, indicating that LIS is involved in a mechanism that prevents accessory cells from adopting gametic cell fate. The temporal and spatial pattern of LIS expression suggests that this mechanism is generated in gametic cells. LIS is homologous to the yeast splicing factor PRP4, indicating that components of the splice apparatus participate in cell fate decisions.


Assuntos
Arabidopsis/citologia , Células Germinativas/citologia , Sequência de Bases , Linhagem da Célula , Primers do DNA , Reação em Cadeia da Polimerase
5.
Plant J ; 56(6): 913-21, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18702672

RESUMO

The formation of gametes is a key step in the life cycle of any sexually reproducing organism. In flowering plants, gametes develop in haploid structures termed gametophytes that comprise a few cells. The female gametophyte forms gametic cells and flanking accessory cells. During a screen for regulators of egg-cell fate, we isolated three mutants, lachesis (lis), clotho (clo) and atropos (ato), that show deregulated expression of an egg-cell marker. We have previously shown that, in lis mutants, which are defective for the splicing factor PRP4, accessory cells can differentiate gametic cell fate. Here, we show that CLOTHO/GAMETOPHYTIC FACTOR 1 (CLO/GFA1) is necessary for the restricted expression of egg- and central-cell fate and hence reproductive success. Surprisingly, infertile gametophytes can be expelled from the maternal ovule tissue, thereby preventing the needless allocation of maternal resources to sterile tissue. CLO/GFA1 encodes the Arabidopsis homologue of Snu114, a protein that is considered to be an essential component of the spliceosome. In agreement with their proposed role in pre-mRNA splicing, CLO/GFA1 and LIS co-localize to nuclear speckles. Our data also suggest that CLO/GFA1 is necessary for the tissue-specific expression of LIS. Furthermore, we demonstrate that ATO encodes the Arabidopsis homologue of SF3a60, a protein that has been implicated in pre-spliceosome formation. Our results thus establish that the restriction of gametic cell fate is specifically coupled to the function of various core spliceosomal components.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Diferenciação Celular , Óvulo/citologia , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Clonagem Molecular , Gametogênese , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Spliceossomos/genética , Spliceossomos/metabolismo
6.
Planta ; 224(6): 1329-40, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16738859

RESUMO

The recovery of free purine and pyrimidine bases and their degradation products represent alternative pathways in plant cells either to synthesize nucleotides (salvage pathways) by low energy consumption or to reuse organic nitrogen. Such recycling of metabolites often requires their uptake into the cell by specialized transport systems residing in the plasma membrane. In plants, it has been suggested that several protein families are involved in this process, but only a few transporters have so far been characterized. In this work, gene expression, substrate specificities, and transport mechanisms of members of the Ureide Permease family in Arabidopsis (AtUPS) were analyzed and compared. Promoter-GUS studies indicated that the members of the family have distinct and partially overlapping expression patterns with regard to developmental stages or tissue specific localization. In addition, two alternative splice variants of AtUPS5, a novel member of the transporter family, were identified and investigated. The abundance of both alternative mRNAs varied in different organs, while the relative amounts were comparable. AtUPS5l (longer isoform) shares similar structural prediction with AtUPS1 and AtUPS2. In contrast, AtUPS5s (shorter isoform) lacks two transmembrane domains as structural consequence of the additional splice event. When expressed in yeast, AtUPS5l mediates cellular import of cyclic purine degradation products and pyrimidines similarly to AtUPS1 and AtUPS2, but differences in transport efficiencies were observed. AtUPS5s, however, could not be shown to mediate uptake of these compounds into yeast cells and might therefore be defective or have a different function.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequência de Bases , Primers do DNA , Proteínas de Membrana Transportadoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA