Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell Mol Life Sci ; 79(10): 524, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123565

RESUMO

Endometrial cancer (EC) is the most common type of gynecologic cancer in women of developed countries. Despite surgery combined with chemo-/radiotherapy regimens, overall survival of patients with high-risk EC tumors is poor, indicating a need for novel therapies. The MEK5-ERK5 pathway is activated in response to growth factors and to different stressors, including oxidative stress and cytokines. Previous evidence supports a role for the MEK5-ERK5 pathway in the pathology of several cancers. We investigated the role of ERK5 in EC. In silico analysis of the PanCancer Atlas dataset showed alterations in components of the MEK5-ERK5 pathway in 48% of EC patients. Here, we show that ERK5 inhibition or silencing decreased EGF-induced EC cell proliferation, and that genetic deletion of MEK5 resulted in EC impaired proliferation and reduced tumor growth capacity in nude mice. Pharmacologic inhibition or ERK5 silencing impaired NF-kB pathway in EC cells and xenografts. Furthermore, we found a positive correlation between ERK5 and p65/RELA protein levels in human EC tumor samples. Mechanistically, genetic or pharmacologic impairment of ERK5 resulted in downregulation of NEMO/IKKγ expression, leading to impaired p65/RELA activity and to apoptosis in EC cells and xenografts, which was rescued by NEMO/IKKγ overexpression. Notably, ERK5 inhibition, MEK5 deletion or NF-kB inhibition sensitized EC cells to standard EC chemotherapy (paclitaxel/carboplatin) toxicity, whereas ERK5 inhibition synergized with paclitaxel to reduce tumor xenograft growth in mice. Together, our results suggest that the ERK5-NEMO-NF-κB pathway mediates EC cell proliferation and survival. We propose the ERK5/NF-κB axis as new target for EC treatment.


Assuntos
Neoplasias do Endométrio , NF-kappa B , Animais , Carboplatina , Proliferação de Células , Citocinas/metabolismo , Neoplasias do Endométrio/genética , Fator de Crescimento Epidérmico/metabolismo , Feminino , Humanos , MAP Quinase Quinase 5/genética , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , NF-kappa B/genética , NF-kappa B/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico
2.
Sci Signal ; 16(789): eadh5114, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311035

RESUMO

PDK1 is a constitutively active master kinase that can phosphorylate and activate as many as 24 enzymes, all belonging to the AGC family of serine-threonine protein kinases. In this issue of Science Signaling, Sacerdoti et al. uncover how allosteric communication between different functional domains directs the selectivity of PDK1 toward particular subsets of substrates.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Serina-Treonina Quinases/genética
3.
Biochim Biophys Acta ; 1811(12): 1124-35, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22020259

RESUMO

Brain specific kinases 1 and 2 (BRSK1/2, also named SAD kinases) are serine-threonine kinases specifically expressed in the brain, and activated by LKB1-mediated phosphorylation of a threonine residue at their T-loop (Thr189/174 in human BRSK1/2). BRSKs are crucial for establishing neuronal polarity, and BRSK1 has also been shown to regulate neurotransmitter release presynaptically. How BRSK1 exerts this latter function is unknown, since its substrates at the synaptic terminal and the mechanisms modulating its activity remain to be described. Key regulators of neurotransmitter release, such as SNARE complex proteins, are located at membrane rafts. Therefore we initially undertook this work to check whether BRSK1 also locates at these membrane microdomains. Here we show that brain BRSK1, but not BRSK2, is palmitoylated, and provide biochemical and pharmacological evidences demonstrating that a pool of BRSK1, but not BRSK2 or LKB1, localizes at membrane lipid rafts. We also show that raft-associated BRSK1 has higher activity than BRSK1 from non-raft environment, based on a higher T-loop phosphorylation at Thr-189. Further, recombinant BRSK1 activity increased 3-fold when assayed with small multilamellar vesicles (SMV) generated with lipids extracted from synaptosomal raft fractions. A similar BRSK1-activating effect was obtained with synthetic SMV made with phosphatidylcholine, cholesterol and sphingomyelin, mixed in the same molar ratio at which these three major lipids are present in rafts. Importantly, SMV also enhanced the activity of a constitutively active BRSK1 (T189E), underpinning that interaction with lipid rafts represents a new mechanism of BRSK1 activity modulation, additional to T-loop phosphorylation.


Assuntos
Encéfalo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Sinaptossomos/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Baculoviridae , Escherichia coli , Feto , Células HEK293 , Humanos , Lipoilação , Membranas Artificiais , Camundongos , Fosforilação , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Treonina/metabolismo
4.
Cancers (Basel) ; 13(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771741

RESUMO

Glioblastoma (GBM) is a highly aggressive brain tumor and almost all patients die because of relapses. GBM-derived cells undergo cell death without nuclear fragmentation upon treatment with different apoptotic agents. Nuclear dismantling determines the point-of-no-return in the apoptotic process. DFF40/CAD is the main endonuclease implicated in apoptotic nuclear disassembly. To be properly activated, DFF40/CAD should reside in the cytosol. However, the endonuclease is poorly expressed in the cytosol and remains cumulated in the nucleus of GBM cells. Here, by employing commercial and non-commercial patient-derived GBM cells, we demonstrate that the natural terpenoid aldehyde gossypol prompts DFF40/CAD-dependent nuclear fragmentation. A comparative analysis between gossypol- and staurosporine-treated cells evidenced that levels of neither caspase activation nor DNA damage were correlated with the ability of each compound to induce nuclear fragmentation. Deconvoluted confocal images revealed that DFF40/CAD was almost completely excluded from the nucleus early after the staurosporine challenge. However, gossypol-treated cells maintained DFF40/CAD in the nucleus for longer times, shaping a ribbon-like structure piercing the nuclear fragments and building a network of bridged masses of compacted chromatin. Therefore, GBM cells can fragment their nuclei if treated with the adequate insult, making the cell death process irreversible.

5.
Am J Physiol Endocrinol Metab ; 298(4): E761-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20051528

RESUMO

Like insulin, leucine stimulates the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70(S6K)) axis in various organs. Insulin proceeds via the canonical association of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent protein kinase-1 (PDK1), and protein kinase B (PKB/Akt). The signaling involved in leucine effect, although known to implicate a PI3K mechanism independent of PKB/Akt, is more poorly understood. In this study, we investigated whether PDK1 could also participate in the events leading to mTOR/p70(S6K) activation in response to leucine in the heart. In wild-type hearts, both leucine and insulin increased p70(S6K) activity whereas, in contrast to insulin, leucine was unable to activate PKB/Akt. The changes in p70(S6K) activity induced by insulin and leucine correlated with changes in phosphorylation of Thr(389), the mTOR phosphorylation site on p70(S6K), and of Ser(2448) on mTOR, both related to mTOR activity. Leucine also triggered phosphorylation of the proline-rich Akt/PKB substrate of 40 kDa (PRAS40), a new pivotal mTOR regulator. In PDK1 knockout hearts, leucine, similarly to insulin, failed to induce the phosphorylation of mTOR and p70(S6K), leading to the absence of p70(S6K) activation. The loss of leucine effect in absence of PDK1 correlated with the lack of PRAS40 phosphorylation. Moreover, the introduction in PDK1 of the L155E mutation, which is known to preserve the insulin-induced and PKB/Akt-dependent phosphorylation of mTOR/p70(S6K), suppressed all leucine effects, including phosphorylation of mTOR, PRAS40, and p70(S6K). We conclude that the leucine-induced stimulation of the cardiac PRAS40/mTOR/p70(S6K) pathway requires PDK1 in a way that differs from that of insulin.


Assuntos
Coração/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Leucina/farmacologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Quinases S6 Ribossômicas 70-kDa/fisiologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Western Blotting , Ativação Enzimática/fisiologia , Glutamina/fisiologia , Coração/fisiologia , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Insulina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Fenilalanina/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR , Treonina/fisiologia
6.
PLoS One ; 15(1): e0227340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31910234

RESUMO

The PI3K/Akt pathway is interconnected to protein kinase CK2, which directly phosphorylates Akt1 at S129. We have previously found that, in HK-2 renal cells, downregulation of the CK2 regulatory subunit ß (shCK2ß cells) reduces S129 Akt phosphorylation. Here, we investigated in more details how the different CK2 isoforms impact on Akt and other signaling pathways. We found that all CK2 isoforms phosphorylate S129 in vitro, independently of CK2ß. However, in HK-2 cells the dependence on CK2ß was confirmed by rescue experiments (CK2ß re-expression in shCK2ß HK-2 cells), suggesting the presence of additional components that drive Akt recognition by CK2 in cells. We also found that CK2ß downregulation altered the phosphorylation ratio between the two canonical Akt activation sites (pT308 strongly reduced, pS473 slightly increased) in HK-2 cells. Similar results were found in other cell lines where CK2ß was stably knocked out by CRISPR-Cas9 technology. The phosphorylation of rpS6 S235/S236, a downstream effector of Akt, was strongly reduced in shCK2ß HK-2 cells, while the phosphorylation of two Akt direct targets, PRAS40 T246 and GSK3ß S9, was increased. Differently to what observed in response to CK2ß down-regulation, the chemical inhibition of CK2 activity by cell treatment with the specific inhibitor CX-4945 reduced both the Akt canonical sites, pT308 and pS473. In CX-4945-treated cells, the changes in rpS6 pS235/S236 and GSK3ß pS9 mirrored those induced by CK2ß knock-down (reduction and slight increase, respectively); on the contrary, the effect on PRAS40 pT246 phosphorylation was sharply different, being strongly reduced by CK2 inhibition; this suggests that this Akt target might be dependent on Akt pS473 status in HK-2 cells. Since PI3K/Akt and ERK1/2/p90rsk pathways are known to be interconnected and both modulated by CK2, with GSK3ß pS9 representing a convergent point, we investigated if ERK1/2/p90rsk signaling was affected by CK2ß knock-down and CX-4945 treatment in HK-2 cells. We found that p90rsk was insensitive to any kind of CK2 targeting; therefore, the observation that, similarly, GSK3ß pS9 was not reduced by CK2 blockade suggests that GSK3ß phosphorylation is mainly under the control of p90rsk in these cells. However, we found that the PI3K inhibitor LY294002 reduced GSK3ß pS9, and concomitantly decreased Snail1 levels (a GSK3ß target and Epithelial-to-Mesenchymal transition marker). The effects of LY294002 were observed also in CK2ß-downregulated cells, suggesting that reducing GSK3ß pS9 could be a strategy to control Snail1 levels in any situation where CK2ß is defective, as possibly occurring in cancer cells.


Assuntos
Caseína Quinase II/genética , Glicogênio Sintase Quinase 3 beta/genética , Proteína Oncogênica v-akt/genética , Fatores de Transcrição da Família Snail/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular , Cromonas/farmacologia , Transição Epitelial-Mesenquimal/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Morfolinas/farmacologia , Naftiridinas/farmacologia , Fenazinas , Fosfatidilinositol 3-Quinases/genética , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais/efeitos dos fármacos
7.
J Cell Biol ; 167(3): 479-92, 2004 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-15520226

RESUMO

Fas apoptosis inhibitory molecule (FAIM) is a protein identified as an antagonist of Fas-induced cell death. We show that FAIM overexpression fails to rescue neurons from trophic factor deprivation, but exerts a marked neurite growth-promoting action in different neuronal systems. Whereas FAIM overexpression greatly enhanced neurite outgrowth from PC12 cells and sympathetic neurons grown with nerve growth factor (NGF), reduction of endogenous FAIM levels by RNAi decreased neurite outgrowth in these cells. FAIM overexpression promoted NF-kappa B activation, and blocking this activation by using a super-repressor I kappa B alpha or by carrying out experiments using cortical neurons from mice that lack the p65 NF-kappa B subunit prevented FAIM-induced neurite outgrowth. The effect of FAIM on neurite outgrowth was also blocked by inhibition of the Ras-ERK pathway. Finally, we show that FAIM interacts with both Trk and p75 neurotrophin receptor NGF receptors in a ligand-dependent manner. These results reveal a new function of FAIM in promoting neurite outgrowth by a mechanism involving activation of the Ras-ERK pathway and NF-kappa B.


Assuntos
Sistema de Sinalização das MAP Quinases , NF-kappa B/fisiologia , Neuritos/metabolismo , Proteínas/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Humanos , Camundongos , NF-kappa B/metabolismo , Neurônios/citologia , Proteínas Oncogênicas/metabolismo , Células PC12 , Proteínas/genética , Proteínas/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Receptor de Fator de Crescimento Neural , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais , Transfecção
8.
J Neurosci ; 27(42): 11228-41, 2007 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17942717

RESUMO

Death receptors (DRs) and their ligands are expressed in developing nervous system. However, neurons are generally resistant to death induction through DRs and rather their activation promotes neuronal outgrowth and branching. These results suppose the existence of DRs antagonists expressed in the nervous system. Fas apoptosis inhibitory molecule (FAIM(S)) was first identified as a Fas antagonist in B-cells. Soon after, a longer alternative spliced isoform with unknown function was identified and named FAIM(L). FAIM(S) is widely expressed, including the nervous system, and we have shown previously that it promotes neuronal differentiation but it is not an anti-apoptotic molecule in this system. Here, we demonstrate that FAIM(L) is expressed specifically in neurons, and its expression is regulated during the development. Expression could be induced by NGF through the extracellular regulated kinase pathway in PC12 (pheochromocytoma cell line) cells. Contrary to FAIM(S), FAIM(L) does not increase the neurite outgrowth induced by neurotrophins and does not interfere with nuclear factor kappaB pathway activation as FAIM(S) does. Cells overexpressing FAIM(L) are resistant to apoptotic cell death induced by DRs such as Fas or tumor necrosis factor R1. Reduction of endogenous expression by small interfering RNA shows that endogenous FAIM(L) protects primary neurons from DR-induced cell death. The detailed analysis of this antagonism shows that FAIM(L) can bind to Fas receptor and prevent the activation of the initiator caspase-8 induced by Fas. In conclusion, our results indicate that FAIM(L) could be responsible for maintaining initiator caspases inactive after receptor engagement protecting neurons from the cytotoxic action of death ligands.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Apoptose/fisiologia , Proteínas Inibidoras de Apoptose/fisiologia , Neurônios/metabolismo , Receptores de Morte Celular/antagonistas & inibidores , Receptores de Morte Celular/fisiologia , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/fisiologia , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Variação Genética/fisiologia , Humanos , Camundongos , Neurônios/patologia , Células PC12 , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Ratos , Receptores de Morte Celular/genética
9.
Curr Biol ; 15(20): 1839-46, 2005 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-16243031

RESUMO

Many cancers possess elevated levels of PtdIns(3,4,5)P(3), the second messenger that induces activation of the protein kinases PKB/Akt and S6K and thereby stimulates cell proliferation, growth, and survival. The importance of this pathway in tumorigenesis has been highlighted by the finding that PTEN, the lipid phosphatase that breaks down PtdIns(3,4,5)P(3) to PtdIns(4,5)P(2), is frequently mutated in human cancer. Cells lacking PTEN possess elevated levels of PtdIns(3,4,5)P(3), PKB, and S6K activity and heterozygous PTEN(+/-) mice develop a variety of tumors. Knockout of PKBalpha in PTEN-deficient cells reduces aggressive growth and promotes apoptosis, whereas treatment of PTEN(+/-) mice with rapamycin, an inhibitor of the activation of S6K, reduces neoplasia. We explored the importance of PDK1, the protein kinase that activates PKB and S6K, in mediating tumorigenesis caused by the deletion of PTEN. We demonstrate that reducing the expression of PDK1 in PTEN(+/-) mice, markedly protects these animals from developing a wide range of tumors. Our findings provide genetic evidence that PDK1 is a key effector in mediating neoplasia resulting from loss of PTEN and also validate PDK1 as a promising anticancer target for the prevention of tumors that possess elevated PKB and S6K activity.


Assuntos
Neoplasias/genética , PTEN Fosfo-Hidrolase/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Fatores Etários , Animais , Imuno-Histoquímica , Camundongos , Camundongos Mutantes , Mutação/genética , Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Quinases S6 Ribossômicas/metabolismo , Análise de Sobrevida
10.
Front Aging Neurosci ; 9: 435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29358916

RESUMO

The Akt kinase has been widely assumed for years as a key downstream effector of the PI3K signaling pathway in promoting neuronal survival. This notion was however challenged by the finding that neuronal survival responses were still preserved in mice with reduced Akt activity. Moreover, here we show that the Akt signaling is elevated in the aged brain of two different mice models of Alzheimer Disease. We manipulate the rate of Akt stimulation by employing knock-in mice expressing a mutant form of PDK1 (phosphoinositide-dependent protein kinase 1) with reduced, but not abolished, ability to activate Akt. We found increased membrane localization and activity of the TACE/ADAM17 α-secretase in the brain of the PDK1 mutant mice with concomitant TNFR1 processing, which provided neurons with resistance against TNFα-induced neurotoxicity. Opposite to the Alzheimer Disease transgenic mice, the PDK1 knock-in mice exhibited an age-dependent attenuation of the unfolding protein response, which protected the mutant neurons against endoplasmic reticulum stressors. Moreover, these two mechanisms cooperatively provide the mutant neurons with resistance against amyloid-beta oligomers, and might singularly also contribute to protect these mice against amyloid-beta pathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA