Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Med ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673596

RESUMO

Background: Exercise training in patients with HCM has evidenced benefits on functional capacity, cardiac function, and a reversion of adverse cardiac remodeling. The objective of this study was to assess the effect of a concurrent resistance and cardiorespiratory training program on functional capacity, biochemical parameters, and echocardiographic variables in a pilot group. Methods: Two HCM patients were evaluated before and after 12 weeks of individualized concurrent training with two sessions/week. Pre- and post-training data were compared for each patient. Evaluations included a cardiopulmonary exercise test (CPET), body composition, echocardiography, electrocardiography, and blood analysis. Results: Training promoted an increase in functional capacity (+4 mL·kg-1·min-1), ventilatory thresholds, and other CPET-derived variables associated with a better prognosis and long-term survival. Muscular mass was augmented (0.8 and 1.2 kg), along with a mean increase of 62% in upper and lower body strength. Echocardiographic features demonstrated the maintenance of cardiac function with signs of positive left ventricular remodeling and an improvement in diastolic function. Blood analyses, including cardiac troponins and NT-proBNP, displayed uneven changes in each patient, but the values fell into normal ranges in both cases. Conclusions: The available data suggest a positive effect of concurrent resistance and cardiorespiratory training on patients' functional capacity and cardiac function that may improve their functional class, quality of life, and long-term prognosis. The replication of this protocol in a larger cohort of patients is warranted to confirm these preliminary results.

2.
ESC Heart Fail ; 10(1): 8-23, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36181355

RESUMO

AIMS: The aim of this study was to synthesize the evidence on the effect of the current therapies over the pathophysiological and clinical characteristics of patients with hypertrophic cardiomyopathy (HCM). METHODS AND RESULTS: A systematic review and meta-analysis of 41 studies identified from 1383 retrieved from PubMed, Web of Science, and Cochrane was conducted. Therapies were grouped in pharmacological, invasive and physical exercise. Pharmacological agents had no effect on functional capacity measured by VO2max (1.11 mL/kg/min; 95% CI: -0.04, 2.25, P < 0.05). Invasive septal reduction therapies increased VO2max (+3.2 mL/kg/min; 95% CI: 1.78, 4.60, P < 0.05). Structured physical exercise programmes did not report contraindications and evidenced the highest increases on functional capacity (VO2max + 4.33 mL/kg/min; 95% CI: 0.20, 8.45, P < 0.05). Patients with left ventricular outflow tract (LVOT) obstruction at rest improved their VO2max to a greater extent compared with those without resting LVOT obstruction (2.82 mL/kg/min; 95% CI: 1.97, 3.67 vs. 1.18; 95% CI: 0.62, 1.74, P < 0.05). Peak LVOT gradient was reduced with the three treatment options with the highest reduction observed for invasive therapies. Left ventricular ejection fraction was reduced in pharmacological and invasive procedures. No effect was observed after physical exercise. Symptomatic status improved with the three options and to a greater extent with invasive procedures. CONCLUSIONS: Invasive septal reduction therapies increase VO2max, improve symptomatic status, and reduce resting and peak LVOT gradient, thus might be considered in obstructive patients. Physical exercise emerges as a coadjuvant therapy, which is safe and associated with benefits on functional capacity. Pharmacological agents improve reported NYHA class, but not functional capacity.


Assuntos
Cardiomiopatia Hipertrófica , Função Ventricular Esquerda , Humanos , Volume Sistólico , Cardiomiopatia Hipertrófica/complicações
3.
J Clin Med ; 10(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070695

RESUMO

BACKGROUND: Patients with chronic diseases frequently adapt their lifestyles to their functional limitations. Functional capacity in Hypertrophic Cardiomyopathy (HCM) can be assessed by stress testing. We aim to review and analyze the available data from the literature on the value of Cardiopulmonary Exercise Test (CPET) in HCM. Objective measurements from CPET are used for evaluation of patient response to traditional and new developing therapeutic measurements. METHODS: A systematic review of the literature was conducted in PubMed, Web of Science and Cochrane in Mar-20. The original search yielded 2628 results. One hundred and two full texts were read after the first screening, of which, 69 were included for qualitative synthesis. Relevant variables to be included in the review were set and 17 were selected, including comorbidities, body mass index (BMI), cardiac-related symptoms, echocardiographic variables, medications and outcomes. RESULTS: Study sample consisted of 69 research articles, including 11,672 patients (48 ± 14 years old, 65.9%/34.1% men/women). Treadmill was the most common instrument employed (n = 37 studies), followed by upright cycle-ergometer (n = 16 studies). Mean maximal oxygen consumption (VO2max) was 22.3 ± 3.8 mL·kg-1·min-1. The highest average values were observed in supine and upright cycle-ergometer (25.3 ± 6.5 and 24.8 ± 9.1 mL·kg-1·min-1; respectively). Oxygen consumption in the anaerobic threshold (ATVO2) was reported in 18 publications. Left ventricular outflow tract gradient (LVOT) > 30 mmHg was present at baseline in 31.4% of cases. It increased to 49% during exercise. Proportion of abnormal blood pressure response (ABPRE) was higher in severe (>20 mm) vs. mild hypertrophy groups (17.9% vs. 13.6%, p < 0.001). Mean VO2max was not significantly different between severe vs. milder hypertrophy, or for obstructive vs. non-obstructive groups. Occurrence of arrhythmias during functional assessment was higher among younger adults (5.42% vs. 1.69% in older adults, p < 0.001). Twenty-three publications (9145 patients) evaluated the prognostic value of exercise capacity. There were 8.5% total deaths, 6.7% cardiovascular deaths, 3.0% sudden cardiac deaths (SCD), 1.2% heart failure death, 0.6% resuscitated cardiac arrests, 1.1% transplants, 2.6% implantable cardioverter defibrillator (ICD) therapies and 1.2 strokes (mean follow-up: 3.81 ± 2.77 years). VO2max, ATVO2, METs, % of age-gender predicted VO2max, % of age-gender predicted METs, ABPRE and ventricular arrhythmias were significantly associated with major outcomes individually. Mean VO2max was reduced in patients who reached the combined cardiovascular death outcome compared to those who survived (-6.20 mL·kg-1·min-1; CI 95%: -7.95, -4.46; p < 0.01). CONCLUSIONS: CPET is a valuable tool and can safely perform for assessment of physical functional capacity in patients with HCM. VO2max is the most common performance measurement evaluated in functional studies, showing higher values in those based on cycle-ergometer compared to treadmill. Subgroup analysis shows that exercise intolerance seems to be more related to age, medication and comorbidities than HCM phenotype itself. Lower VO2max is consistently seen in HCM patients at major cardiovascular risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA