Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Genomics ; 16: 1079, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26691352

RESUMO

BACKGROUND: The YAC128 model of Huntington's disease (HD) shows substantial deficits in motor, learning and memory tasks and alterations in its transcriptional profile. We examined the changes in the transcriptional profile in the YAC128 mouse model of HD at 6, 12 and 18 months and compared these with those seen in other models and human HD caudate. RESULTS: Differential gene expression by genotype showed that genes related to neuronal function, projection outgrowth and cell adhesion were altered in expression. A Time-course ANOVA revealed that genes downregulated with increased age in wild-type striata were likely to be downregulated in the YAC128 striata. There was a substantial overlap of concordant gene expression changes in the YAC128 striata compared with those in human HD brain. Changes in gene expression over time showed fewer striatal YAC128 RNAs altered in abundance than in the HdhQ150 striata but there was a very marked overlap in transcriptional changes at all time points. Despite the similarities in striatal expression changes at 18 months the HdhQ150 mice showed widespread mHTT and ubiquitin positive inclusion staining in the striatum whereas this was absent in the YAC128 striatum. CONCLUSIONS: The gene expression changes in YAC128 striata show a very closely matched profile to that of HdhQ150 striata and are already significantly different between genotypes by six months of age, implying that the temporal molecular gene expression profiles of these models match very closely, despite differences in the prevalence of brain inclusion formation between the models. The YAC128 gene expression changes appear to correlate well with gene expression differences caused by ageing. A relatively small number of genes showed significant differences in expression between the striata of the two models and these could explain some of the phenotypic differences between the models.


Assuntos
Encéfalo/crescimento & desenvolvimento , Doença de Huntington/epidemiologia , Doença de Huntington/genética , Transcriptoma , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Doença de Huntington/patologia , Masculino , Camundongos , Prevalência
2.
PLoS One ; 11(5): e0155834, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27196694

RESUMO

Huntington's disease (HD) cellular pathology is characterised by the aggregation of mutant huntingtin (mHTT) protein into inclusion bodies. The present paper compared the sensitivity of five widely used mHTT antibodies (S830; MW8; EM48; 1C2; ubiquitin) against mice from five commonly used HD mouse models (R6/1; YAC128; HdhQ92; B6 HdhQ150; B6 x129/Ola HdhQ150) at two ages to determine: the most sensitive antibodies for each model; whether mHTT antibody binding differed depending on aggregation stage (diffuse versus frank inclusion); the role of ubiquitin during aggregation as the ubiquitin proteosome system has been implicated in disease development. The models demonstrated unique profiles of antibody binding even when the models varied only by background strain (HdhQ150). MW8 was highly sensitive for detecting frank inclusions in all lines whereas EM48, ubiquitin and 1C2 demonstrated consistent staining in all models irrespective of age or form of mHTT. MW8 and S830 were the most sensitive antibodies with 1C2 the least. Ubiquitin levels were stable for each model regardless of age. Ubiquitin was particularly sensitive in young YAC128 mice that demonstrate an absence of inclusions until ~12 months of age suggesting high affinity to mHTT in its diffuse form. The data indicate that generalisations across models regarding the quantification of aggregations may not be valid and that mHTT antibody binding is unique to the mouse model and sensitive to changes in inclusion development.


Assuntos
Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Ubiquitina/metabolismo , Animais , Anticorpos/química , Encéfalo/metabolismo , Modelos Animais de Doenças , Genótipo , Proteína Huntingtina/imunologia , Imuno-Histoquímica , Corpos de Inclusão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Ligação Proteica , Reprodutibilidade dos Testes
3.
J Neurosci Methods ; 265: 81-8, 2016 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-26459195

RESUMO

BACKGROUND: The Golgi-Cox stain is an established method for characterising neuron cell morphology. The method highlights neurite processes of stained cells allowing the complexity of dendritic branching to be measured. NEW METHODS: Conventional rapid Golgi and Golgi-Cox methods all require fresh impregnation in unfixed brain blocks. Here, we describe a modified method that gives high quality staining on brain tissue blocks perfusion-fixed with 4% paraformaldehyde (PFA) and post-fixed by immersion for 24h. RESULTS: Tissue perfused with 4% PFA and post fixed for 24h remained viable for the modified Golgi-Cox silver impregnation staining of mouse striatum from perfused wild type and zQ175. It was not found necessary to impregnate tissue blocks with Golgi solutions prior to sectioning, as post-sectioned tissues yielded equally good impregnation. Impregnation for 14 days resulted in optimal visualisation of striatal neuron and dendritic morphology. Although no modifications applied to the rapid Golgi method were reliable, the modified Golgi-Cox method yielded consistently reliable high-quality staining. COMPARISON WITH EXISTING METHODS: The current method used fixed tissues to reduce damage and preserve cell morphology. The revised method was found to be fast, reliable and cost effective without the need for expensive staining kits and could be performed in any neuroscience lab with limited specialist equipment. CONCLUSIONS: The present study introduces a robust reproducible and inexpensive staining method for identifying neuronal morphological changes in the post fixed mouse brain, and is suitable for assessing changes in cell morphology in models of neurodegeneration and in response to experimental treatment.


Assuntos
Encéfalo/patologia , Doença de Huntington/patologia , Coloração pela Prata/métodos , Fixação de Tecidos/métodos , Animais , Dendritos/patologia , Modelos Animais de Doenças , Feminino , Fixadores , Formaldeído , Masculino , Cloreto de Mercúrio , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Polímeros
4.
Sci Rep ; 6: 32423, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581950

RESUMO

Huntington's disease (HD) is a genetically-determined neurodegenerative disease. Characterising neuropathology in mouse models of HD is commonly restricted to cross-sectional ex vivo analyses, beset by tissue fixation issues. In vivo longitudinal magnetic resonance imaging (MRI) allows for disease progression to be probed non-invasively. In the HdhQ150 mouse model of HD, in vivo MRI was employed at two time points, before and after the onset of motor signs, to assess brain macrostructure and white matter microstructure. Ex vivo MRI, immunohistochemistry, transmission electron microscopy and behavioural testing were also conducted. Global brain atrophy was found in HdhQ150 mice at both time points, with no neuropathological progression across time and a selective sparing of the cerebellum. In contrast, no white matter abnormalities were detected from the MRI images or electron microscopy images alike. The relationship between motor function and MR-based structural measurements was different for the HdhQ150 and wild-type mice, although there was no relationship between motor deficits and histopathology. Widespread neuropathology prior to symptom onset is consistent with patient studies, whereas the absence of white matter abnormalities conflicts with patient data. The myriad reasons for this inconsistency require further attention to improve the translatability from mouse models of disease.


Assuntos
Encéfalo/diagnóstico por imagem , Doença de Huntington/diagnóstico por imagem , Transtornos Psicomotores/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Animais , Atrofia , Peso Corporal , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Mapeamento Encefálico , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transtornos Psicomotores/genética , Transtornos Psicomotores/patologia , Transtornos Psicomotores/fisiopatologia , Desempenho Psicomotor , Especificidade da Espécie , Substância Branca/metabolismo
5.
Brain Res Bull ; 88(2-3): 189-98, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21511013

RESUMO

Huntington's disease is an autosomal dominant, progressive neurodegenerative disease in which a single mutation in the gene responsible for the protein huntingtin leads to a primarily striatal and cortical neuronal loss, resulting progressive motor, cognitive and psychiatric disability and ultimately death. The mutation induces an abnormal protein accumulation within cells, although the precise role of this accumulation in the disease process is unknown. Several animal models have been created to model the disease. In the present study, the pathology of the Hdh(CAG(150)) mouse model was analyzed longitudinally over 24 months. At 5 months of age, the mutant N-terminal antibody S830 found dense nuclear staining and nuclear inclusions in the olfactory tubercle and striatum of the Hdh(Q150/Q150) mice. Nuclear inclusions increased in number and size with age and disease progression, and spread in ventral to dorsal, and anterior to posterior pattern. Electron microscopy observations at 14 months of age revealed that the neurons showed a normal nucleus having a circular shape and regular membranes in a densely packed cytoplasm, whereas by 21 months the cytoplasm was vacuolated and contained swollen mitochondria with many degenerated cytoplasmic organelles. Immunogold labelling of the S830 antibody was found to be specifically localised to the inner area of the neuronal intra-nuclear inclusions. Our data demonstrate a marked and progressive cellular phenotype that begins at 5 months of age and progresses with time. The pathology the Hdh(Q150/Q150) line was focused on the striatum and cortex until the late stage of the disease, consistent with the human condition.


Assuntos
Doença de Huntington/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/ultraestrutura , Proteínas Nucleares/metabolismo , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/ultraestrutura , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Corpo Estriado/ultraestrutura , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética
6.
Brain Res Bull ; 88(2-3): 171-81, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21513775

RESUMO

Huntington's disease (HD) is a fatally progressive neurodegenerative disease that is characterized anatomically by the abnormal accumulation of fragments of mutant huntingtin protein, within the glia and neurons of the brain. Several genetic (transgenic and knock-in) animal models have been established to mimic human HD. None of these models represent all of the elements of the human disease, but they provide an opportunity to understand the processes of the disease and aid in the development of therapeutic strategies. In this study, the Hdh(Q92) mouse model of Huntington's disease was analysed at different time points across the lifespan of the animal. At 4 months of age, Hdh(Q92/Q92) mice showed dense nuclear staining and nuclear inclusions in the olfactory tubercle and striatum with the mutant N-terminal antibody S830. Widespread formation of mutant huntingtin aggregates in the neuronal nuclei and cytosol increased in number with age and disease progression. Electron microscopy revealed that at 14 and at 21 months of age neurons showed the features of both necrotic and apoptotic cell death, such as irregular nuclear and cytoplasmic membranes, dark condensed nuclei, vacuolated cytoplasm, and swollen mitochondria. The spatial spread of NIIs progressed along the anterior-posterior and ventral-dorsal planes. Our detailed analyses of the Hdh(Q92) mouse line demonstrated a progressive and marked early focal striatal pathology with later widespread neuronal changes, including cellular degeneration, mutant protein aggregation and inclusion formation. We have demonstrated that the distribution of intra- and extra nuclear inclusions in this animal model expresses many features similar to the human pathology.


Assuntos
Encéfalo/patologia , Doença de Huntington/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/ultraestrutura , Proteínas Nucleares/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética
7.
Brain Res Bull ; 88(2-3): 137-47, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21620935

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disease caused by the insertion of an expanded polyglutamine sequence within the huntingtin protein. This mutation induces the formation of abnormal protein fragment aggregations and intra-nuclear neuronal inclusions in the brain. The present study aimed to produce a detailed longitudinal characterization of the neuronal pathology in the YAC128 transgenic mouse brain, to determine the similarity of this mouse model to other mouse models and the human condition in the spatial and temporal deposition pattern of the mutant protein fragments. Brain samples were taken from mice aged between 4 and 27 months of age, and assessed using S830 and GFAP immunohistochemistry, stereology and electron microscopy. Four month old mice did not exhibit intra-nuclear or extra-nuclear inclusions using the S830 antibody. Diffuse nuclear staining was present in the cortex, hippocampus and cerebellum from 6 months of age onwards. By 15 months of age, intra-nuclear inclusions were visible in most brain regions including nucleus accumbens, ventral striatum, lateral striatum, motor cortex, sensory cortex and cerebellum. The ventral striatum had a greater density of inclusions than the dorsal striatum. At 15 and 24 months of age, the mice showed increased reactive astrogliosis in the cortex, but no differences were found in the striatum. Necrotic cell death with vacuolation, uneven cell membrane and degenerated Golgi apparatus were detected ultrastructurally at 14 months of age, with some cells showing signs of apoptosis. By 26 months of age, most cells were degenerated in the transgenic animals, with lipofuscin granules being more abundant and larger in these mice than in their wildtype littermates. Our results demonstrate a progressive and widespread neuropathology in the YAC128 mice line that shares some similarity to the human condition. This article is part of a Special Issue entitled 'HD Transgenic Mouse'.


Assuntos
Encéfalo/patologia , Encéfalo/ultraestrutura , Doença de Huntington/patologia , Neurônios/ultraestrutura , Envelhecimento , Animais , Apoptose , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Neurônios/metabolismo
8.
Brain Res Bull ; 88(2-3): 104-12, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21801812

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expansion of CAG repeats in the Htt gene. Examination of the post-mortem brains of HD patients shows the presence of diffuse nuclear htt immunoreactivity and intra-nuclear inclusions. The aim of this study was to produce a detailed characterization of the neuronal pathology in the R6/1 transgenic mouse model. The R6/1 carrier mice demonstrate intra-nuclear and extra-nuclear inclusions with the S830 htt antibody at 2-11 months of age. The distribution pattern of neuronal intra-nuclear inclusions (NIIs) was irregular in several brain regions including the striatum, cortex and hippocampus. A greater number of NIIs were found in the ventral striatum than in the dorsal striatum. In the globus pallidus, cerebellum and thalamus the pattern of inclusion formation was relatively consistent over time. At 4 and 6 months of age, the R6/1 mice showed increased glial fibrillary acid protein (GFAP) immunoreactivity in the cortex compared to their wildtype littermates, yet no difference was found in the striatum. Analysis by electron microscopy found that neurons from the R6/1 carriers contained a densely packed cytoplasm at 1.5 months of age, with some neurons displaying structural abnormalities including vacuolization and nuclear membrane folding. No NIIs were detected at this age, but by 7 months of age, NIIs were present with severe cellular vacuolization. The present study indicates that a decrease in striatal volume with cell loss is present in young (2 months) R6/1 mice, and the distribution of NIIs is robust and widespread, with considerably temporal and spatial variation in NII development between mice.


Assuntos
Doença de Huntington/patologia , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Corpo Estriado/ultraestrutura , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/ultraestrutura , Doença de Huntington/genética , Doença de Huntington/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Neurônios/metabolismo , Neurônios/ultraestrutura
9.
Brain Res Bull ; 88(2-3): 121-9, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21624441

RESUMO

People with HD have a demonstrated early extra-dimensional set-shifting deficit. In the present study, we use a novel water T-maze set-shifting procedure and demonstrate its validity as a set-shifting task in a mouse model of Huntington's disease. Three groups of YAC128 mice of different ages (27, 69 and 117 weeks) were run on the task, which incorporated six distinct stages in which the mice must learn a rule and then switch to a different rule. The six stages were: directional learning, directional learning reversal, light discrimination, light discrimination reversal, return to place learning and a maze rotation spatial learning test. Rule changes from place learning to light discrimination and back constitute extra-dimensional shifts. The results of the study demonstrate robust light/dark discrimination reversal learning deficits in transgenic mice from 27 weeks of age, and a directional learning to light discrimination extra-dimensional set-shifting deficit from 69 weeks of age. The extra-dimensional shift deficit was confirmed with control trials demonstrating the validity of the deficit and the task. The onset of reversal learning and extra-dimensional shift deficits corresponded with the development of mutant huntingtin N-terminal fragment aggregates in neurons of relevant forebrain regions.


Assuntos
Comportamento Animal , Doença de Huntington/fisiopatologia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Aprendizagem por Discriminação , Modelos Animais de Doenças , Feminino , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reversão de Aprendizagem
10.
Brain Res Bull ; 88(2-3): 223-36, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21963415

RESUMO

The transgenic Huntington's disease (tgHD) rat strain provides a well regarded transgenic animal model of Huntington's disease, offering the prospect for a more detailed functional analysis in rats, along with neurological and therapeutic interventions, than is possible in the more widely available mouse models. In the present experiments, we compare the performance of heterozygous and homozygous tgHD rats against wildtype littermates on a range of motor and cognitive assessments in five separate cohorts of rats between 8 and 22 months of age. Male but not female heterozygous tgHD rats exhibit modest motor deficits in rotarod and staircase reaching tests, whereas most cognitive tests (including object recognition, exploration of novelty, delayed alternation, choice reaction time, and serial implicit learning tasks) revealed at best small or inconsistent deficits, in homozygous as well as heterozygous animals, up to 22 months of age. Thus, although we have observed modest but clear-cut deficits in motor phenotype, with a sex difference in line with previous reports, we have not established a robust cognitive impairment in this strain on a range of tasks sensitive to frontostriatal function, as required for testing novel (symptomatic, protective or reparative) therapeutics in a robust, valid, animal model of human Huntington's disease.


Assuntos
Doença de Huntington/fisiopatologia , Atividade Motora/genética , Desempenho Psicomotor/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Humanos , Doença de Huntington/genética , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Transgênicos , Tempo de Reação/genética
11.
Brain Res Bull ; 88(2-3): 94-103, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21272613

RESUMO

Huntington's disease is caused by a single mutation on the HTT gene which produces an expansion in the number of glutamine repeats present in the huntingtin protein. This mutation results in an array of motor, cognitive and behavioural problems mediated by a progressive loss of striatal neurons and brain atrophy. The identification of behavioural phenotypes in mouse models of the disease provides a baseline of efficacy for therapeutic interventions. The R6/1 mouse line carries ∼115 CAG repeats and has an aggressive form of the disease. The aim of the present study was to undertake longitudinal behavioural characterisation of this mouse line in order to quantify the time course and severity of disease progression. In the present study, when compared to wildtype littermates, male R6/1 heterozygous mice demonstrated a progressive weight loss from 3 months of age. The R6/1 carriers also demonstrated a relatively stable motor coordination deficit on the rotarod, and progressive impairments on each aspect of the balance beam test: latency to orientate and traverse the beam; number of fore- and hind-limb footslips. The R6/1 carriers were less reactive to acoustic startle stimuli and displayed less inhibition to prepulse warning stimuli than their wildtype littermates. In the Morris water maze, the R6/1 carriers demonstrated a deficit on latency to find the platform and path length measures, which was apparent by 3 months of age but not further progressive. They also demonstrated fewer entries into the target zone during probe trials. The data from the present study demonstrate that the R6/1 mouse has a profound behavioural phenotype that includes motor and cognitive deficits, but that not all of these deficits were robustly progressive in nature.


Assuntos
Comportamento Animal , Modelos Animais de Doenças , Doença de Huntington/genética , Análise de Variância , Animais , Progressão da Doença , Feminino , Genótipo , Doença de Huntington/patologia , Estudos Longitudinais , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Mutação/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA