Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
New Phytol ; 231(5): 2065-2076, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33634863

RESUMO

Epigenetic mosaicism is a possible source of within-plant phenotypic heterogeneity, yet its frequency and developmental origin remain unexplored. This study examines whether extant epigenetic heterogeneity within Lavandula latifolia (Lamiaceae) shrubs reflects recent epigenetic modifications experienced independently by different plant parts or, alternatively, it is the cumulative outcome of a steady lifetime process. Leaf samples from different architectural modules (branch tips) were collected from three L. latifolia plants and characterized epigenetically by global DNA cytosine methylation and methylation state of methylation-sensitive amplified fragment-length polymorphism (MS-AFLP) markers. Epigenetic characteristics of modules were then assembled with information on the branching history of plants. Methods borrowed from phylogenetic research were used to assess genealogical signal of extant epigenetic variation and reconstruct within-plant genealogical trajectory of epigenetic traits. Plants were epigenetically heterogeneous, as shown by differences among modules in global DNA methylation and variation in the methylation states of 6 to 8% of MS-AFLP markers. All epigenetic features exhibited significant genealogical signal within plants. Events of epigenetic divergence occurred throughout the lifespan of individuals and were subsequently propagated by branch divisions. Internal epigenetic diversification of L. latifolia individuals took place steadily during their development, a process which eventually led to persistent epigenetic mosaicism.


Assuntos
Lamiaceae , Lavandula , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Metilação de DNA/genética , Epigênese Genética , Lavandula/genética , Mosaicismo , Filogenia
2.
Am J Bot ; 106(6): 798-806, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31157419

RESUMO

PREMISE: Phenotypic heterogeneity of reiterated, homologous structures produced by individual plants has ecological consequences for plants and their animal consumers. This paper examines experimentally the epigenetic mosaicism hypothesis, which postulates that within-plant variation in traits of reiterated structures may partly arise from different parts of the same genetic individual differing in patterns or extent of genomic DNA methylation. METHODS: Leaves of paired ramets borne by field-growing Helleborus foetidus plants were infiltrated periodically over the entire flowering period with either a water solution of the demethylating agent zebularine or just water as the control. The effects of the zebularine treatment were assessed by quantifying genome-wide DNA cytosine methylation in leaves and monitoring inflorescence growth and flower production, number of ovules per flower, pollination success, fruit set, seed set, seed size, and distribution of sap-feeding insects. RESULTS: Genomic DNA from leaves in zebularine-treated ramets was significantly less methylated than DNA from leaves in control ones. Inflorescences in treated ramets grew smaller and produced fewer flowers, with fewer ovules and lower follicle and seed set, but did not differ from inflorescences in untreated ramets in pollination success or seed size. The zebularine treatment influenced the within-plant distribution of sap-feeding insects. CONCLUSIONS: Experimental manipulation of genomic DNA methylation level in leaves of wild-growing H. foetidus plants induced considerable within-plant heterogeneity in phenotypic (inflorescences, flowers, fecundity) and ecologically relevant traits (herbivore distribution), which supports the hypothesis that epigenetic mosaicism may partly account for within-plant variation.


Assuntos
Citosina/metabolismo , Metilação de DNA , Epigênese Genética , Fertilidade/genética , Helleborus/fisiologia , Herbivoria/fisiologia , Flores/genética , Flores/fisiologia , Helleborus/genética , Inflorescência/genética , Inflorescência/fisiologia , Mosaicismo , Folhas de Planta/fisiologia , Sementes/genética , Sementes/fisiologia
3.
Ann Bot ; 121(1): 153-160, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29186299

RESUMO

Background and Aims: Sub-individual variation in traits of homologous structures has multiple ecological consequences for individuals and populations. Assessing the evolutionary significance of such effects requires an improved knowledge of the mechanisms underlying within-plant phenotypic heterogeneity. The hypothesis that continuous within-plant variation in some phenotypic traits can be associated with epigenetic mosaicism was examined. Methods: Fifteen individuals of the long-lived, evergreen Mediterranean shrub Lavandula latifolia were studied. Five widely spaced 'modules', each consisting of a single inflorescence plus all its subtending basal leaves, were collected from each shrub. Genomic DNA was extracted from leaf samples and genome-wide cytosine methylation determined by reversed phase high-performance liquid chromatography (HPLC) with spectrofluorimetric detection. The number and mean mass of seeds produced were determined for each inflorescence. An assessment was made of whether (1) leaves from different modules in the same plant differed significantly in global DNA cytosine methylation, and (2) mosaicism in cytosine methylation contributed to explain variation across modules in number and size of seeds. Key Results: Leaves from different modules in the same plant differed in global DNA cytosine methylation. The magnitude of epigenetic mosaicism was substantial, as the variance in DNA methylation among modules of the same shrub was greater than the variance between individuals. Number and mean mass of seeds produced by individual inflorescences varied within plants and were quadratically related to cytosine methylation of subtending leaves, with an optimum at an intermediate methylation level (approx. 25 %). Conclusions: The results support a causal link between global cytosine methylation of leaves in a module and the size and numbers of seeds produced by the associated inflorescence. It is proposed that variation in global DNA methylation within L. latifolia shrubs may result from the concerted action of plant sectoriality and differential exposure of different plant parts to some environmental factor(s) with a capacity to induce durable epigenetic changes.


Assuntos
Epigênese Genética , Flores/anatomia & histologia , Lavandula/anatomia & histologia , Mosaicismo , Sementes/anatomia & histologia , Metilação de DNA , DNA de Plantas/genética , Epigênese Genética/genética , Flores/genética , Flores/fisiologia , Lavandula/genética , Lavandula/fisiologia , Fenótipo , Reprodução , Sementes/genética
4.
Am J Bot ; 105(4): 741-748, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29727470

RESUMO

PREMISE OF THE STUDY: The ecological and evolutionary significance of natural epigenetic variation (i.e., not based on DNA sequence variants) variation will depend critically on whether epigenetic states are transmitted from parents to offspring, but little is known on epigenetic inheritance in nonmodel plants. METHODS: We present a quantitative analysis of transgenerational transmission of global DNA cytosine methylation (= proportion of all genomic cytosines that are methylated) and individual epigenetic markers (= methylation status of anonymous MSAP markers) in the shrub Lavandula latifolia. Methods based on parent-offspring correlations and parental variance component estimation were applied to epigenetic features of field-growing plants ('maternal parents') and greenhouse-grown progenies. Transmission of genetic markers (AFLP) was also assessed for reference. KEY RESULTS: Maternal parents differed significantly in global DNA cytosine methylation (range = 21.7-36.7%). Greenhouse-grown maternal families differed significantly in global methylation, and their differences were significantly related to maternal origin. Methylation-sensitive amplified polymorphism (MSAP) markers exhibited significant transgenerational transmission, as denoted by significant maternal variance component of marker scores in greenhouse families and significant mother-offspring correlations of marker scores. CONCLUSIONS: Although transmission-related measurements for global methylation and MSAP markers were quantitatively lower than those for AFLP markers taken as reference, this study has revealed extensive transgenerational transmission of genome-wide global cytosine methylation and anonymous epigenetic markers in L. latifolia. Similarity of results for global cytosine methylation and epigenetic markers lends robustness to this conclusion, and stresses the value of considering both types of information in epigenetic studies of nonmodel plants.


Assuntos
Citosina/metabolismo , Metilação de DNA , Epigênese Genética , Lavandula/genética , Metilação de DNA/genética , Epigênese Genética/genética , Marcadores Genéticos/genética , Variação Genética/genética , Lavandula/metabolismo
5.
Am J Bot ; 104(8): 1195-1204, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28814406

RESUMO

PREMISE OF THE STUDY: Epigenetic variation can play a role in local adaptation; thus, there should be associations among epigenetic variation, environmental variation, and functional trait variation across populations. This study examines these relationships in the perennial herb Helleborus foetidus (Ranunculaceae). METHODS: Plants from 10 subpopulations were characterized genetically (AFLP, SSR markers), epigenetically (MSAP markers), and phenotypically (20 functional traits). Habitats were characterized using six environmental variables. Isolation-by-distance (IBD) and isolation-by-environment (IBE) patterns of genetic and epigenetic divergence were assessed, as was the comparative explanatory value of geographical and environmental distance as predictors of epigenetic, genetic, and functional differentiation. KEY RESULTS: Subpopulations were differentiated genetically, epigenetically, and phenotypically. Genetic differentiation was best explained by geographical distance, while epigenetic differentiation was best explained by environmental distance. Divergence in functional traits was correlated with environmental and epigenetic distances, but not with geographical and genetic distances. CONCLUSIONS: Results are compatible with the hypothesis that epigenetic IBE and functional divergence reflected responses to environmental variation. Spatial analyses simultaneously considering epigenetic, genetic, phenotypic and environmental information provide a useful tool to evaluate the role of environmental features as drivers of natural epigenetic variation between populations.

6.
New Phytol ; 212(3): 571-576, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27483440

RESUMO

Polyploidization is a significant evolutionary force in plants which involves major genomic and genetic changes, frequently regulated by epigenetic factors. We explored whether natural polyploidization in Dianthus broteri complex resulted in substantial changes in global DNA cytosine methylation associated to ploidy. Global cytosine methylation was estimated by high-performance liquid chromatography (HPLC) in 12 monocytotypic populations with different ploidies (2×, 4×, 6×, 12×) broadly distributed within D. broteri distribution range. The effects of ploidy level and local variation on methylation were assessed by generalized linear mixed models (GLMMs). Dianthus broteri exhibited a higher methylation percent (˜33%) than expected by its monoploid genome size and a large variation among study populations (range: 29.3-35.3%). Global methylation tended to increase with ploidy but did not significantly differ across levels due to increased variation within the highest-order polyploidy categories. Methylation varied more among hexaploid and dodecaploid populations, despite such cytotypes showing more restricted geographic location and increased genetic relatedness than diploids and tetraploids. In this study, we demonstrate the usefulness of an HPLC method in providing precise and genome reference-free global measure of DNA cytosine methylation, suitable to advance current knowledge of the roles of this epigenetic mechanism in polyploidization processes.


Assuntos
Citosina/metabolismo , Metilação de DNA/genética , Dianthus/genética , Epigênese Genética , Poliploidia , Variação Genética , Folhas de Planta/genética
7.
Mol Ecol ; 25(8): 1653-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26850938

RESUMO

Despite the recent upsurge of interest on natural epigenetic variation of nonmodel organisms, factors conditioning the spatial structure of epigenetic diversity in wild plant populations remain virtually unexplored. We propose that information on processes shaping natural epigenetic variation can be gained using the spatial structure of genetic diversity as null model. Departures of epigenetic isolation-by-distance (IBD) patterns from genetic IBD patterns for the same sample, particularly differences in slope of similarity-distance regressions, will reflect the action of factors that operate specifically on epigenetic variation, including imperfect transgenerational inheritance and responsiveness to environmental factors of epigenetic marks. As a proof of concept, we provide a comparative analysis of spatial genetic and epigenetic structure of 200 mapped individuals of the perennial herb Helleborus foetidus. Plants were fingerprinted using nuclear microsatellites, amplified fragment length polymorphisms (AFLP) and methylation-sensitive AFLP markers. Expectations from individual-level IBD patterns were tested by means of kinship-distance regressions. Both genetic and epigenetic similarity between H. foetidus individuals conformed to theoretical expectations under individual-level IBD models. Irrespective of marker type, there were significant negative linear relationships between the kinship coefficient for plant pairs and their spatial separation. Regression slopes were significantly steeper for epigenetic markers. Epigenetic similarity between individuals was much greater than genetic similarity at shortest distances, such epigenetic 'kinship excess' tending to decrease as plant separation increased. Results suggest that moderate-to-high heritability and responsiveness to local environments are major drivers of epigenetic spatial structure in H. foetidus, and illustrate the heuristic value of comparing genetic and epigenetic spatial structure for formulating and testing hypotheses on forces shaping epigenetic diversity in wild plant populations.


Assuntos
Epigênese Genética , Genética Populacional , Helleborus/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Impressões Digitais de DNA , Metilação de DNA , DNA de Plantas/genética , Variação Genética , Heurística , Repetições de Microssatélites , Análise Espacial
8.
Am J Bot ; 102(2): 225-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25667075

RESUMO

PREMISE OF THE STUDY: Continuous within-plant variation in quantitative traits of reiterated, homologous structures is a component of intraspecific variation, but its contribution to functional diversity remains largely unexplored. For the perennial Helleborus foetidus, we measured functional leaf traits to quantify the contribution of within-plant variation to intraspecific functional variance and evaluate whether within-plant variability itself deserves separate consideration. METHODS: Within-individual variation in eight leaf traits was quantified for 138 plants sampled from 10 widely spaced locations in the Sierra de Cazorla, southeastern Spain. An amplified fragment length polymorphism (AFLP) technique was used to look for associations between within-plant variability and specific AFLP markers. KEY RESULTS: Leaflets from basal positions in ramets were longer, heavier, had greater surface area and larger stomata, and lower specific area, stomatal index, and stomatal density than those from distal positions. Continuous variation between leaves from the same ramet was the main source of population-wide variance for most traits. Within-plant variability differed among populations. Individuals differed in within-plant variability, which was largely independent of trait means and associated with genetic characteristics. Up to four AFLP markers were associated with the within-plant variability level of a given leaf trait. CONCLUSIONS: Subindividual variability in continuous leaf traits was independent of plant means and related to genetic features. The within-individual component generally exceeded the between-individual component of intraspecific variance. Within-plant variation may broaden the ecological breadth and enhance stability and persistence of plant populations and communities and may provide novel insights when incorporated in trait-based community ecology models.


Assuntos
DNA de Plantas/análise , Helleborus/genética , Fenótipo , Folhas de Planta/anatomia & histologia , Polimorfismo Genético , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Ecologia , Epigênese Genética , Helleborus/anatomia & histologia , Estômatos de Plantas , Espanha
9.
Mol Ecol ; 23(20): 4926-38, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25208110

RESUMO

The ecological significance of epigenetic variation has been generally inferred from studies on model plants under artificial conditions, but the importance of epigenetic differences between individuals as a source of intraspecific diversity in natural plant populations remains essentially unknown. This study investigates the relationship between epigenetic variation and functional plant diversity by conducting epigenetic (methylation-sensitive amplified fragment length polymorphisms, MSAP) and genetic (amplified fragment length polymorphisms, AFLP) marker-trait association analyses for 20 whole-plant, leaf and regenerative functional traits in a large sample of wild-growing plants of the perennial herb Helleborus foetidus from ten sampling sites in south-eastern Spain. Plants differed widely in functional characteristics, and exhibited greater epigenetic than genetic diversity, as shown by per cent polymorphism of MSAP fragments (92%) or markers (69%) greatly exceeding that for AFLP ones (41%). After controlling for genetic structuring and possible cryptic relatedness, every functional trait considered exhibited a significant association with at least one AFLP or MSAP marker. A total of 27 MSAP (13.0% of total) and 12 AFLP (4.4%) markers were involved in significant associations, which explained on average 8.2% and 8.0% of trait variance, respectively. Individual MSAP markers were more likely to be associated with functional traits than AFLP markers. Between-site differences in multivariate functional diversity were directly related to variation in multilocus epigenetic diversity after multilocus genetic diversity was statistically accounted for. Results suggest that epigenetic variation can be an important source of intraspecific functional diversity in H. foetidus, possibly endowing this species with the capacity to exploit a broad range of ecological conditions despite its modest genetic diversity.


Assuntos
Epigênese Genética , Helleborus/genética , Polimorfismo Genético , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Metilação de DNA , DNA de Plantas/genética , Marcadores Genéticos , Fenótipo , Análise de Sequência de DNA , Espanha
10.
Mol Ecol ; 23(5): 1085-95, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24471446

RESUMO

Inferences about the role of epigenetics in plant ecology and evolution are mostly based on studies of cultivated or model plants conducted in artificial environments. Insights from natural populations, however, are essential to evaluate the possible consequences of epigenetic processes in biologically realistic scenarios with genetically and phenotypically heterogeneous populations. Here, we explore associations across individuals between DNA methylation transmissibility (proportion of methylation-sensitive loci whose methylation status persists unchanged after male gametogenesis), genetic characteristics (assessed with AFLP markers), seed size variability (within-plant seed mass variance), and realized maternal fecundity (number of recently recruited seedlings), in three populations of the perennial herb Helleborus foetidus along a natural ecological gradient in southeastern Spain. Plants (sporophytes) differed in the fidelity with which DNA methylation was transmitted to descendant pollen (gametophytes). This variation in methylation transmissibility was associated with genetic differences. Four AFLP loci were significantly associated with transmissibility and accounted collectively for ~40% of its sample-wide variance. Within-plant variance in seed mass was inversely related to individual transmissibility. The number of seedlings recruited by individual plants was significantly associated with transmissibility. The sign of the relationship varied between populations, which points to environment-specific, divergent phenotypic selection on epigenetic transmissibility. Results support the view that epigenetic transmissibility is itself a phenotypic trait whose evolution may be driven by natural selection, and suggest that in natural populations epigenetic and genetic variation are two intertwined, rather than independent, evolutionary factors.


Assuntos
Metilação de DNA , Epigênese Genética , Heterogeneidade Genética , Helleborus/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA de Plantas/genética , Fertilidade/genética , Genética Populacional , Helleborus/fisiologia , Pólen/genética , Sementes/fisiologia , Espanha
11.
Am J Bot ; 101(8): 1309-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25143467

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Few studies have examined how epigenetic modifications of DNA may influence individual plant phenotypes and ecological processes in wild plant populations. We investigated natural variation in global DNA cytosine methylation and its phenotypic correlates in the perennial herb Helleborus foetidus.• METHODS: We focused specifically on individual differences in size- and fecundity-related traits and used HPLC to quantify percentage of total cytosines in the genome of young full-grown leaves that were methylated.• KEY RESULTS: About one third of all cytosines in H. foetidus genome were methylated. Methylation level differed significantly among individual plants (range = 26.4-36.6%; n = 60 plants), and this variation was significantly related to most size- and fecundity-related traits considered. Relatively hypomethylated plants bore more vegetative, reproductive, and total ramets, produced more flowers, larger inflorescences and more seed-bearing follicles, and their ramets remained vegetative for fewer years before reproducing sexually, than relatively hypermethylated ones. Taken together, results revealed that individual differences in size and reproductive output were inversely related to global cytosine methylation.• CONCLUSIONS: These results confirm, in a natural scenario, the association between DNA methylation and size- and fecundity-related traits that was previously found by experimental studies. Variations in global cytosine methylation were predictably related to individual differences in sexual reproduction through significant effects on flower and fruit production, which might ultimately influence patterns of selection and population dynamics in this species. This study provides novel insights on the potential ecological significance of epigenetic heterogeneity in wild plant populations.


Assuntos
Citosina/metabolismo , Metilação de DNA , DNA de Plantas/metabolismo , Genoma de Planta , Helleborus/genética , Fenótipo , Epigênese Genética , Fertilidade , Flores , Helleborus/metabolismo , Helleborus/fisiologia , Folhas de Planta , Ranunculaceae , Reprodução/genética
12.
Microb Ecol ; 61(1): 82-91, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20449581

RESUMO

Floral nectar of insect-pollinated plants often contains dense yeast populations, yet little quantitative information exists on patterns and magnitude of species richness of nectar-dwelling yeasts in natural plant communities. This study evaluates yeast species richness at both the plant community and plant species levels in a montane forest area in southern Spain, and also explores possible correlations between the incidence of different yeast species in nectar and their reported tolerance to high sugar concentrations, and between yeast diversity and pollinator composition. Yeast species occurring in a total of 128 field-collected nectar samples from 24 plant species were identified by sequencing the D1/D2 domain of the large subunit rDNA, and rarefaction-based analyses were used to estimate yeast species richness at the plant community and plant species levels, using nectar drops as elemental sampling units. Individual nectar samples were generally characterized by very low species richness (1.2 yeast species/sample, on average), with the ascomycetous Metschnikowia reukaufii and Metschnikowia gruessii accounting altogether for 84.7% of the 216 isolates identified. Other yeasts recorded included species in the genera Aureobasidium, Rhodotorula, Cryptococcus, Sporobolomyces, and Lecythophora. The shapes and slopes of observed richness accumulation curves were quite similar for the nectar drop and plant species approaches, but the two approaches yielded different expected richness estimates. Expected richness was higher for plant species-based than for nectar drop-based analyses, showing that the coverage of nectar yeast species occurring in the region would be improved by sampling additional host plant species. A significant correlation was found between incidence of yeast species in nectar and their reported ability to grow in a medium containing 50% glucose. Neither diversity nor incidence of yeasts was correlated with pollinator composition across plant species.


Assuntos
Biodiversidade , Néctar de Plantas , Plantas/microbiologia , Leveduras/classificação , Leveduras/isolamento & purificação , Adaptação Fisiológica/fisiologia , Animais , Insetos/fisiologia , Espanha , Leveduras/genética , Leveduras/crescimento & desenvolvimento
13.
Proc Biol Sci ; 277(1682): 747-54, 2010 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19889702

RESUMO

Identifying the rules and mechanisms that determine the composition and diversity of naturally co-occurring species assemblages is a central topic in community ecology. Although micro-organisms represent the 'unseen majority' of species, individuals and biomass in many ecosystems and play pivotal roles in community development and function, the study of the factors influencing the assembly of microbial communities has lagged behind that of plant and animal communities. In this paper, we investigate experimentally the mechanisms accounting for the low species richness of yeast communities inhabiting the nectar of the bumble-bee-pollinated Helleborus foetidus (Ranunculaceae), and explore the relationships between community assembly rules and phylogenetic relatedness. By comparing yeast communities on the glossae of foraging bumble-bees (the potential species pool) with those eventually establishing in virgin nectar probed with bee glossae (the realized community), we address the questions: (i) does nectar filter yeast inocula, so that the communities eventually established there are not random subsamples of species on bumble-bee glossae? and (ii) do yeast communities establishing in H. foetidus nectar exhibit some phylogenetic bias relative to the species pool on bumble-bee glossae? Results show that nectar filtering leads to species-poor, phylogenetically clustered yeast communities that are a predictable subset of pollinator-borne inocula. Such strong habitat filtering is probably due to H. foetidus nectar representing a harsh environment for most yeasts, where only a few phylogenetically related nectar specialists physiologically endowed to tolerate a combination of high osmotic pressure and fungicidal compounds are able to develop.


Assuntos
Abelhas/fisiologia , Ecossistema , Flores/microbiologia , Filogenia , Leveduras/crescimento & desenvolvimento , Animais , Flores/química , Néctar de Plantas/química , Polinização , Ranunculaceae , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
14.
New Phytol ; 187(3): 867-76, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20497347

RESUMO

*In plants, epigenetic variations based on DNA methylation are often heritable and could influence the course of evolution. Before this hypothesis can be assessed, fundamental questions about epigenetic variation remain to be addressed in a real-world context, including its magnitude, structuring within and among natural populations, and autonomy in relation to the genetic context. *Extent and patterns of cytosine methylation, and the relationship to adaptive genetic divergence between populations, were investigated for wild populations of the southern Spanish violet Viola cazorlensis (Violaceae) using the methylation-sensitive amplified polymorphism (MSAP) technique, a modification of the amplified fragment length polymorphism method (AFLP) based on the differential sensitivity of isoschizomeric restriction enzymes to site-specific cytosine methylation. *The genome of V. cazorlensis plants exhibited extensive levels of methylation, and methylation-based epigenetic variation was structured into distinct between- and within- population components. Epigenetic differentiation of populations was correlated with adaptive genetic divergence revealed by a Bayesian population-genomic analysis of AFLP data. Significant associations existed at the individual genome level between adaptive AFLP loci and the methylation state of methylation-susceptible MSAP loci. *Population-specific, divergent patterns of correlated selection on epigenetic and genetic individual variation could account for the coordinated epigenetic-genetic adaptive population differentiation revealed by this study.


Assuntos
Adaptação Fisiológica/genética , Epigênese Genética , Variação Genética , Genética Populacional , Viola/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , Metilação de DNA/genética , Frequência do Gene/genética , Loci Gênicos/genética , Genoma de Planta/genética , Polimorfismo Genético
15.
AoB Plants ; 12(3): plaa013, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32477484

RESUMO

Genetic diversity defines the evolutionary potential of a species, yet mounting evidence suggests that epigenetic diversity could also contribute to adaptation. Elucidating the complex interplay between genetic and epigenetic variation in wild populations remains a challenge for evolutionary biologists, and the intriguing possibility that epigenetic diversity could compensate for the loss of genetic diversity is one aspect that remains basically unexplored in wild plants. This hypothesis is addressed in this paper by comparing the extent and patterns of genetic and epigenetic diversity of phylogenetically closely related but ecologically disparate species. Seven pairs of congeneric species from Cazorla mountains in south-eastern Spain were studied, each pair consisting of one endemic, restricted-range species associated to stressful environments, and one widespread species occupying more favourable habitats. The prediction was tested that endemic species should have lower genetic diversity due to population fragmentation, and higher epigenetic diversity induced by environmental stress, than their widespread congeners. Genetic (DNA sequence variants) and epigenetic (DNA cytosine methylation variants) diversities and their possible co-variation were assessed in three populations of each focal species using amplified fragment length polymorphism (AFLP) and methylation-sensitive AFLP (MSAP). All species and populations exhibited moderate to high levels of genetic polymorphism irrespective of their ecological characteristics. Epigenetic diversity was greater than genetic diversity in all cases. Only in endemic species were the two variables positively related, but the difference between epigenetic and genetic diversity was greater at populations with low genetic polymorphism. Results revealed that the relationship between genetic and epigenetic diversity can be more complex than envisaged by the simple hypothesis addressed in this study, and highlight the need of additional research on the actual role of epigenetic variation as a source of phenotypic diversity before a realistic understanding of the evolutionary relevance of epigenetic phenomena in plant adaptation can be achieved.

16.
Ecol Evol ; 6(11): 3832-3847, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-28725357

RESUMO

Little is known on the potential of ecological disturbance to cause genetic and epigenetic changes in plant populations. We take advantage of a long-term field experiment initiated in 1986 to study the demography of the shrub Lavandula latifolia, and compare genetic and epigenetic characteristics of plants in two adjacent subplots, one experimentally disturbed and one left undisturbed, 20 years after disturbance. Experimental setup was comparable to an unreplicated 'Before-After-Control-Impact' (BACI) design where a single pair of perturbed and control areas were compared. When sampled in 2005, plants in the two subplots had roughly similar ages, but they had established in contrasting environments: dense conspecific population ('Undisturbed' subpopulation) versus open area with all conspecifics removed ('Disturbed' subpopulation). Plants were characterized genetically and epigenetically using amplified fragment length polymorphism (AFLP) and two classes of methylation-sensitive AFLP (MSAP) markers. Subpopulations were similar in genetic diversity but differed in epigenetic diversity and multilocus genetic and epigenetic characteristics. Epigenetic divergence between subpopulations was statistically unrelated to genetic divergence. Bayesian clustering revealed an abrupt linear boundary between subpopulations closely coincident with the arbitrary demarcation line between subplots drawn 20 years back, which supports that genetic and epigenetic divergence between subpopulations was caused by artificial disturbance. There was significant fine-scale spatial structuring of MSAP markers in both subpopulations, which in the Undisturbed one was indistinguishable from that of AFLP markers. Genetic differences between subpopulations could be explained by divergent selection alone, while the concerted action of divergent selection and disturbance-driven appearance of new methylation variants in the Disturbed subpopulation is proposed to explain epigenetic differences. This study provides the first empirical evidence to date suggesting that relatively mild disturbances could leave genetic and epigenetic signatures on the next adult generation of long-lived plants.

17.
Mol Ecol Resour ; 16(1): 80-90, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-25944158

RESUMO

Methylation of DNA cytosines affects whether transposons are silenced and genes are expressed, and is a major epigenetic mechanism whereby plants respond to environmental change. Analyses of methylation-sensitive amplification polymorphism (MS-AFLP or MSAP) have been often used to assess methyl-cytosine changes in response to stress treatments and, more recently, in ecological studies of wild plant populations. MSAP technique does not require a sequenced reference genome and provides many anonymous loci randomly distributed over the genome for which the methylation status can be ascertained. Scoring of MSAP data, however, is not straightforward, and efforts are still required to standardize this step to make use of the potential to distinguish between methylation at different nucleotide contexts. Furthermore, it is not known how accurately MSAP infers genome-wide cytosine methylation levels in plants. Here, we analyse the relationship between MSAP results and the percentage of global cytosine methylation in genomic DNA obtained by HPLC analysis. A screening of literature revealed that methylation of cytosines at cleavage sites assayed by MSAP was greater than genome-wide estimates obtained by HPLC, and percentages of methylation at different nucleotide contexts varied within and across species. Concurrent HPLC and MSAP analyses of DNA from 200 individuals of the perennial herb Helleborus foetidus confirmed that methyl-cytosine was more frequent in CCGG contexts than in the genome as a whole. In this species, global methylation was unrelated to methylation at the inner CG site. We suggest that global HPLC and context-specific MSAP methylation estimates provide complementary information whose combination can improve our current understanding of methylation-based epigenetic processes in nonmodel plants.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Citosina/metabolismo , Metilação de DNA , Helleborus/genética , Marcadores Genéticos , Genoma de Planta , Helleborus/classificação , Helleborus/metabolismo
18.
Front Genet ; 6: 4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25688257

RESUMO

DNA cytosine methylation is a widespread epigenetic mechanism in eukaryotes, and plant genomes commonly are densely methylated. Genomic methylation can be associated with functional consequences such as mutational events, genomic instability or altered gene expression, but little is known on interspecific variation in global cytosine methylation in plants. In this paper, we compare global cytosine methylation estimates obtained by HPLC and use a phylogenetically-informed analytical approach to test for significance of evolutionary signatures of this trait across 54 angiosperm species in 25 families. We evaluate whether interspecific variation in global cytosine methylation is statistically related to phylogenetic distance and also whether it is evolutionarily correlated with genome size (C-value). Global cytosine methylation varied widely between species, ranging between 5.3% (Arabidopsis) and 39.2% (Narcissus). Differences between species were related to their evolutionary trajectories, as denoted by the strong phylogenetic signal underlying interspecific variation. Global cytosine methylation and genome size were evolutionarily correlated, as revealed by the significant relationship between the corresponding phylogenetically independent contrasts. On average, a ten-fold increase in genome size entailed an increase of about 10% in global cytosine methylation. Results show that global cytosine methylation is an evolving trait in angiosperms whose evolutionary trajectory is significantly linked to changes in genome size, and suggest that the evolutionary implications of epigenetic mechanisms are likely to vary between plant lineages.

19.
Mol Ecol Resour ; 15(5): 1216-25, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25655349

RESUMO

Feather mites (Astigmata: Analgoidea and Pterolichoidea) are among the most abundant and commonly occurring bird ectosymbionts. Basic questions on the ecology and evolution of feather mites remain unanswered because feather mite species identification is often only possible for adult males, and it is laborious even for specialized taxonomists, thus precluding large-scale identifications. Here, we tested DNA barcoding as a useful molecular tool to identify feather mites from passerine birds. Three hundred and sixty-one specimens of 72 species of feather mites from 68 species of European passerine birds from Russia and Spain were barcoded. The accuracy of barcoding and minibarcoding was tested. Moreover, threshold choice (a controversial issue in barcoding studies) was also explored in a new way, by calculating through simulations the effect of sampling effort (in species number and species composition) on threshold calculations. We found one 200-bp minibarcode region that showed the same accuracy as the full-length barcode (602 bp) and was surrounded by conserved regions potentially useful for group-specific degenerate primers. Species identification accuracy was perfect (100%) but decreased when singletons or species of the Proctophyllodes pinnatus group were included. In fact, barcoding confirmed previous taxonomic issues within the P. pinnatus group. Following an integrative taxonomy approach, we compared our barcode study with previous taxonomic knowledge on feather mites, discovering three new putative cryptic species and validating three previous morphologically different (but still undescribed) new species.


Assuntos
Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ácaros/classificação , Ácaros/genética , Animais , Aves , DNA Mitocondrial/química , DNA Mitocondrial/genética , Plumas/parasitologia , Dados de Sequência Molecular , Federação Russa , Análise de Sequência de DNA , Espanha
20.
FEMS Microbiol Ecol ; 87(3): 568-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24283468

RESUMO

Environmental heterogeneity has been often suggested as a major driving force preserving genetic variation in clonal microorganisms. This study examines this hypothesis for the specialized nectar-dwelling, clonal yeast Metschnikowia reukaufii (Ascomycota, Saccharomycetales). We examined whether M. reukaufii subpopulations associated with flowers of different host plant species, and different individuals of the same host species, differed in genetic characteristics. Amplified fragment length polymorphisms (AFLP) fingerprints of M. reukaufii strains isolated from floral nectar of different host species and individuals sampled at different spatial scales revealed a strong host-mediated component of genetic and genotypic diversity at all scales considered. Genotypes were nonrandomly distributed among flowers of different species and, in the case of the single host species studied in detail (Helleborus foetidus), also among flowers of conspecific individuals coexisting locally. These host-mediated patterns of genetic structuring are compatible with those expected under the diversifying selection hypothesis for the maintenance of local and regional genetic diversity in clonal organisms. It is proposed that a combination of intrafloral selection and biased pollinator-mediated migration may ultimately account for observed host-mediated genetic structuring in populations of M. reukaufii.


Assuntos
Flores/microbiologia , Variação Genética , Genótipo , Metschnikowia/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Dados de Sequência Molecular , Néctar de Plantas , Polinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA