Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Sci ; 113(7): 1975-1986, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38561054

RESUMO

Sialic acid (SA) is crucial for protecting glycoproteins from clearance. Efmarodocokin alfa (IL-22Fc), a fusion protein agonist that links IL-22 to the crystallizable fragment (Fc) of human IgG4, contains 8 N-glycosylation sites and exhibits heterogeneous and variable terminal sialylation biodistribution. This presents a unique challenge for Pharmacokinetic (PK) and Pharmacodynamic (PD) analysis and cross-species translation. In this study, we sought to understand how varying SA levels and heterogeneous distribution contribute to IL-22Fc's complex PKPD properties. We initially used homogenous drug material with varying SA levels to examine PKPD in mice. Population PKPD analysis based on mouse data revealed that SA was a critical covariate simultaneously accounting for the substantial between subject variability (BSV) in clearance (CL), distribution clearance (CLd), and volume of distribution (Vd). In addition to the well-established mechanism by which SA inhibits ASGPR activity, we hypothesized a novel mechanism by which decrease in SA increases the drug uptake by endothelial cells. This decrease in SA, leading to more endothelial uptake, was supported by the neonatal Fc receptor (FcRn) dependent cell-based transcytosis assay. The population analysis also suggested in vivo EC50 (IL-22Fc stimulating Reg3ß) was independent on SA, while the in-vitro assay indicated a contradictory finding of SA-in vitro potency relationship. We created a mechanism based mathematical (MBM) PKPD model incorporating the decrease in SA mediated endothelial and hepatic uptake, and successfully characterized the SA influence on IL-22Fc PK, as well as the increased PK exposure being responsible for increased PD. Thereby, the MBM model supported that SA has no direct impact on EC50, aligning with the population PKPD analysis. Subsequently, using the MBM PKPD model, we employed 5 subpopulation simulations to reconstitute the heterogeneity of drug material. The simulation accurately predicted the PKPD of heterogeneously and variably sialylated drug in mouse, monkey and human. The successful prospective validation confirmed the MBM's ability to predict IL-22Fc PK across variable SA levels, homogenous to heterogeneous material, and across species (R2=0.964 for clearance prediction). Our model prediction suggests an average of 1 mol/mol SA increase leads to a 50% increase in drug exposure. This underlines the significance of controlling sialic acid levels during lot-to-lot manufacturing.


Assuntos
Interleucina 22 , Interleucinas , Fígado , Ácido N-Acetilneuramínico , Proteínas Recombinantes de Fusão , Animais , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Ácido N-Acetilneuramínico/metabolismo , Glicosilação , Humanos , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/metabolismo , Interleucinas/metabolismo , Interleucinas/farmacocinética , Distribuição Tecidual , Masculino , Modelos Biológicos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos
2.
Nat Commun ; 15(1): 3259, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627419

RESUMO

The heterogeneity inherent in today's biotherapeutics, especially as a result of heavy glycosylation, can affect a molecule's safety and efficacy. Characterizing this heterogeneity is crucial for drug development and quality assessment, but existing methods are limited in their ability to analyze intact glycoproteins or other heterogeneous biotherapeutics. Here, we present an approach to the molecular assessment of biotherapeutics that uses proton-transfer charge-reduction with gas-phase fractionation to analyze intact heterogeneous and/or glycosylated proteins by mass spectrometry. The method provides a detailed landscape of the intact molecular weights present in biotherapeutic protein preparations in a single experiment. For glycoproteins in particular, the method may offer insights into glycan composition when coupled with a suitable bioinformatic strategy. We tested the approach on various biotherapeutic molecules, including Fc-fusion, VHH-fusion, and peptide-bound MHC class II complexes to demonstrate efficacy in measuring the proteoform-level diversity of biotherapeutics. Notably, we inferred the glycoform distribution for hundreds of molecular weights for the eight-times glycosylated fusion drug IL22-Fc, enabling correlations between glycoform sub-populations and the drug's pharmacological properties. Our method is broadly applicable and provides a powerful tool to assess the molecular heterogeneity of emerging biotherapeutics.


Assuntos
Glicoproteínas , Polissacarídeos , Glicosilação , Glicoproteínas/metabolismo , Espectrometria de Massas/métodos , Polissacarídeos/metabolismo
3.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37765135

RESUMO

Peptide mapping is an important tool used to confirm that the correct sequence has been expressed for a protein and to evaluate protein post-translational modifications (PTMs) that may arise during the production, processing, or storage of protein drugs. Our new orally administered drug (Ab-1), a single-domain antibody, is highly stable and resistant to proteolysis. Analysis via the commonly used tryptic mapping method did not generate sufficient sequence coverage. Alternative methods were needed to study the Ab-1 drug substance (75 mg/mL) and drug product (3 mg/mL). To meet these analytical needs, we developed two new peptide mapping methods using lysyl endopeptidase (Lys-C) digestion. These newly developed protein digestion protocols do not require desalting/buffer-exchange steps, thereby reducing sample preparation time and improving method robustness. Additionally, the protein digestion is performed under neutral pH with methionine acting as a scavenger to minimize artifacts, such as deamidation and oxidation, which are induced during sample preparation. Further, the method for low-concentration samples performs comparably to the method for high-concentration samples. Both methods provide 100% sequence coverage for Ab-1, and, therefore, enable comprehensive characterization for its product quality attribute (PQA) assessment. Both methods can be used to study other antibody formats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA